Nondeterministic finite automaton in the context of Automata theory


Nondeterministic finite automaton in the context of Automata theory

Nondeterministic finite automaton Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Nondeterministic finite automaton in the context of "Automata theory"


⭐ Core Definition: Nondeterministic finite automaton

In automata theory, a finite-state machine is called a deterministic finite automaton (DFA), if

  • each of its transitions is uniquely determined by its source state and input symbol, and
  • reading an input symbol is required for each state transition.

A nondeterministic finite automaton (NFA), or nondeterministic finite-state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. Sometimes the term NFA is used in a narrower sense, referring to an NFA that is not a DFA, but not in this article.

↓ Menu
HINT:

In this Dossier

Nondeterministic finite automaton in the context of Finite-state automaton

A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of states at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a transition. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types—deterministic finite-state machines and non-deterministic finite-state machines. For any non-deterministic finite-state machine, an equivalent deterministic one can be constructed.

The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are vending machines, which dispense products when the proper combination of coins is deposited; elevators, whose sequence of stops is determined by the floors requested by riders; traffic lights, which change sequence when cars are waiting; and combination locks, which require the input of a sequence of numbers in the proper order.

View the full Wikipedia page for Finite-state automaton
↑ Return to Menu

Nondeterministic finite automaton in the context of Transition table

In automata theory and sequential logic, a state-transition table is a table showing what state (or states in the case of a nondeterministic finite automaton) a finite-state machine will move to, based on the current state and other inputs. It is essentially a truth table in which the inputs include the current state along with other inputs, and the outputs include the next state along with other outputs.

A state-transition table is one of many ways to specify a finite-state machine. Other ways include a state diagram.

View the full Wikipedia page for Transition table
↑ Return to Menu