Non-empty in the context of Cardinality


Non-empty in the context of Cardinality

Non-empty Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Non-empty in the context of "Cardinality"


⭐ Core Definition: Non-empty

In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set.

Any set other than the empty set is called non-empty.

↓ Menu
HINT:

In this Dossier

Non-empty in the context of Well-founded

In mathematics, a binary relation R is called well-founded (or wellfounded or foundational) on a set or, more generally, a class X if every non-empty subset (or subclass) SX has a minimal element with respect to R; that is, there exists an mS such that, for every sS, one does not have s R m. More formally, a relation is well-founded if:Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.

Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, meaning there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.

View the full Wikipedia page for Well-founded
↑ Return to Menu

Non-empty in the context of Well-order

In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set (or woset). In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering.

Every non-empty well-ordered set has a least element. Every element s of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than s. There may be elements, besides the least element, that have no predecessor (see § Natural numbers below for an example). A well-ordered set S contains for every subset T with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of T in S.

View the full Wikipedia page for Well-order
↑ Return to Menu