Nitrocellulose in the context of "Adhesive"

Play Trivia Questions online!

or

Skip to study material about Nitrocellulose in the context of "Adhesive"

Ad spacer

⭐ Core Definition: Nitrocellulose

Nitrocellulose (also known as cellulose nitrate, flash paper, flash cotton, guncotton, pyroxylin and flash string, depending on form) is a highly flammable compound formed by nitrating cellulose through exposure to a mixture of nitric acid and sulfuric acid.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Nitrocellulose in the context of Glue

Adhesive, also known as glue, cement, mucilage, or paste, is any non-metallic substance applied to one or both surfaces of two separate items that binds them together and resists their separation.

The use of adhesives offers certain advantages over other binding techniques such as sewing, mechanical fastenings, and welding. These include the ability to bind different materials together, the more efficient distribution of stress across a joint, the cost-effectiveness of an easily mechanized process, and greater flexibility in design. Disadvantages of adhesive use include decreased stability at high temperatures, relative weakness in bonding large objects with a small bonding surface area, and greater difficulty in separating objects during testing. Adhesives are typically organized by the method of adhesion followed by reactive or non-reactive, a term which refers to whether the adhesive chemically reacts in order to harden. Alternatively, they can be organized either by their starting physical phase or whether their raw stock is of natural or synthetic origin.

↑ Return to Menu

Nitrocellulose in the context of Cellophane

Cellophane is a thin, transparent sheet made of regenerated cellulose. Its low permeability to air, oils, greases, bacteria, and liquid water makes it useful for food packaging. Cellophane is highly permeable to water vapour, but may be coated with nitrocellulose lacquer to prevent this.

Cellophane is also used in transparent pressure-sensitive tape, tubing, and many other similar applications.

↑ Return to Menu

Nitrocellulose in the context of Collodion

Collodion is a flammable, syrupy solution of nitrocellulose in ether and alcohol. There are two basic types: flexible and non-flexible. The flexible type is often used as a surgical dressing or to hold dressings in place. When painted on the skin, collodion dries to form a flexible nitrocellulose film. While it is initially colorless, it discolors over time. Non-flexible collodion is often used in theatrical make-up. Collodion was also the basis of most wet-plate photography until it was superseded by modern gelatin emulsions.

↑ Return to Menu

Nitrocellulose in the context of Cellulose acetate film

Cellulose acetate film, or safety film, is used in photography as a base material for photographic emulsions. It was introduced in the early 20th century by film manufacturers and intended as a safe film base replacement for unstable and highly flammable nitrate film.

Cellulose diacetate film was first employed commercially for photographic film in 1909. Cellulose acetate propionate and cellulose acetate butyrate were introduced in the 1930s, and cellulose triacetate in the late 1940s. Acetate films were later replaced by polyester bases.

↑ Return to Menu

Nitrocellulose in the context of Nitroglycerin

Nitroglycerin (NG) (alternative spelling nitroglycerine), also known as trinitroglycerol (TNG), nitro, glyceryl trinitrate (GTN), or 1,2,3-trinitroxypropane, is a dense, colorless or pale yellow, oily, explosive liquid most commonly produced by nitrating glycerol with white fuming nitric acid under conditions appropriate to the formation of the nitric acid ester. Chemically, the substance is a nitrate ester rather than a nitro compound, but the traditional name is retained. Discovered in 1846 by Ascanio Sobrero, nitroglycerin has been used as an active ingredient in the manufacture of explosives, namely dynamite, and as such it is employed in the construction, demolition, and mining industries. It is combined with nitrocellulose to form double-based smokeless powder, used as a propellant in artillery and firearms since the 1880s.

As is the case for many other explosives, nitroglycerin becomes more and more prone to exploding (i.e., spontaneous decomposition) as the temperature is increased. Upon exposure to heat above 218 °C at sea-level atmospheric pressure, nitroglycerin becomes extremely unstable and tends to explode. When placed in vacuum, it has an autoignition temperature of 270 °C instead. With a melting point of 12.8 °C, the chemical is almost always encountered as a thick and viscous fluid, changing to a crystalline solid when frozen. Although the pure compound itself is colorless, in practice the presence of nitric oxide impurities left over during production tends to give it a slight yellowish tint.

↑ Return to Menu

Nitrocellulose in the context of Celluloid

Celluloids are a class of materials produced by mixing nitrocellulose and camphor, often with added dyes and other agents. Once much more common for its use as photographic film before the advent of safer methods, celluloid's common present-day uses are for manufacturing table tennis balls, musical instruments, combs, office equipment, fountain pen bodies, and guitar picks.

↑ Return to Menu

Nitrocellulose in the context of Monopropellant

Monopropellants are propellants consisting of chemicals that release energy through exothermic chemical decomposition. The molecular bond energy of the monopropellant is released usually through use of a catalyst. This can be contrasted with bipropellants that release energy through the chemical reaction between an oxidizer and a fuel. While stable under defined storage conditions, monopropellants decompose very rapidly under certain other conditions to produce a large volume of its own energetic (hot) gases for the performance of mechanical work. Although solid deflagrants such as nitrocellulose, the most commonly used propellant in firearms, could be thought of as monopropellants, the term is usually reserved for liquids in engineering literature.

↑ Return to Menu