The effects of a nuclear explosion on its immediate vicinity are typically much more destructive and multifaceted than those caused by conventional explosives. In most cases, the energy released from a nuclear weapon detonated within the lower atmosphere can be approximately divided into four basic categories:
Depending on the design of the weapon and the location in which it is detonated, the energy distributed to any one of these categories may be significantly higher or lower. The physical blast effect is created by the coupling of immense amounts of energy, spanning the electromagnetic spectrum, with the surroundings. The environment of the explosion (e.g. submarine, ground burst, air burst, or exo-atmospheric) determines how much energy is distributed to the blast and how much to radiation. In general, surrounding a bomb with denser media, such as water, absorbs more energy and creates more powerful shock waves while at the same time limiting the area of its effect. When a nuclear weapon is surrounded only by air, lethal blast and thermal effects proportionally scale much more rapidly than lethal radiation effects as explosive yield increases. This bubble is faster than the speed of sound. The physical damage mechanisms of a nuclear weapon (blast and thermal radiation) are identical to those of conventional explosives, but the energy produced by a nuclear explosion is usually millions of times more powerful per unit mass, and temperatures may briefly reach the tens of millions of degrees.