Neutron diffraction in the context of Neutron radiation


Neutron diffraction in the context of Neutron radiation

Neutron diffraction Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Neutron diffraction in the context of "Neutron radiation"


⭐ Core Definition: Neutron diffraction

Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material. The technique is similar to X-ray diffraction but due to their different scattering properties, neutrons and X-rays provide complementary information: X-Rays are suited for superficial analysis, strong x-rays from synchrotron radiation are suited for shallow depths or thin specimens, while neutrons having high penetration depth are suited for bulk samples.

↓ Menu
HINT:

In this Dossier

Neutron diffraction in the context of X-ray diffraction

X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern. It is different from X-ray crystallography which exploits X-ray diffraction to determine the arrangement of atoms in materials, and also has other components such as ways to map from experimental diffraction measurements to the positions of atoms.

This article provides an overview of X-ray diffraction, starting with the early history of x-rays and the discovery that they have the right spacings to be diffracted by crystals. In many cases these diffraction patterns can be Interpreted using a single scattering or kinematical theory with conservation of energy (wave vector). Many different types of X-ray sources exist, ranging from ones used in laboratories to higher brightness synchrotron light sources. Similar diffraction patterns can be produced by related scattering techniques such as electron diffraction or neutron diffraction. If single crystals of sufficient size cannot be obtained, various other X-ray methods can be applied to obtain less detailed information; such methods include fiber diffraction, powder diffraction and (if the sample is not crystallized) small-angle X-ray scattering (SAXS).

View the full Wikipedia page for X-ray diffraction
↑ Return to Menu

Neutron diffraction in the context of Wavenumber

In the physical sciences, the wavenumber (or wave number), also known as repetency, is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length, expressed in SI units of cycles per metre or reciprocal metre (m). Angular wavenumber, defined as the wave phase divided by time, is a quantity with dimension of angle per length and SI units of radians per metre. They are analogous to temporal frequency, respectively the ordinary frequency, defined as the number of wave cycles divided by time (in cycles per second or reciprocal seconds), and the angular frequency, defined as the phase angle divided by time (in radians per second).

In multidimensional systems, the wavenumber is the magnitude of the wave vector. The space of wave vectors is called reciprocal space. Wave numbers and wave vectors play an essential role in optics and the physics of wave scattering, such as X-ray diffraction, neutron diffraction, electron diffraction, and elementary particle physics. For quantum mechanical waves, the wavenumber multiplied by the reduced Planck constant is the canonical momentum.

View the full Wikipedia page for Wavenumber
↑ Return to Menu

Neutron diffraction in the context of Forward scatter

Forward scattering is the deflection of waves by small angles so that they continue to move in close to the same direction as before the scattering. It can occur with all types of waves, for instance light, ultraviolet radiation, X-rays as well as matter waves such as electrons, neutrons and even water waves. It can be due to diffraction, refraction, and low angle reflection. It almost always occurs when the wavelength of the radiation used is small relative to the features which lead to the scattering. Forward scatter is essentially the reverse of backscatter.

Many different examples exist, and there are very large fields where forward scattering dominates, in particular for electron diffraction and electron microscopy, X-ray diffraction and neutron diffraction. In these the relevant waves are transmitted through the samples. One case where there is forward scattering in a reflection geometry is reflection high-energy electron diffraction.

View the full Wikipedia page for Forward scatter
↑ Return to Menu

Neutron diffraction in the context of Neutron scattering

Neutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. The natural/physical phenomenon is of elemental importance in nuclear engineering and the nuclear sciences. Regarding the experimental technique, understanding and manipulating neutron scattering is fundamental to the applications used in crystallography, physics, physical chemistry, biophysics, and materials research.

Neutron scattering is practiced at research reactors and spallation neutron sources that provide neutron radiation of varying intensities. Neutron diffraction (elastic scattering) techniques are used for analyzing structures; where inelastic neutron scattering is used in studying atomic vibrations and other excitations.

View the full Wikipedia page for Neutron scattering
↑ Return to Menu

Neutron diffraction in the context of Powder diffractometer

Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer.

Powder diffraction stands in contrast to single crystal diffraction techniques, which work best with a single, well-ordered crystal.

View the full Wikipedia page for Powder diffractometer
↑ Return to Menu

Neutron diffraction in the context of Journal of Applied Crystallography

The Journal of Applied Crystallography is a peer-reviewed scientific journal published by Wiley-Blackwell on behalf of the International Union of Crystallography. It was established in 1968 with André Guinier as the founding editor. The journal covers the application of crystallography and crystallographic techniques. William Parrish (1914–1991) chaired the committee that started the journal.

The Journal of Applied Crystallography publishes articles on the crystallographic methods that are used to study crystalline and non-crystalline matter with neutrons, X-rays and electrons, their application in condensed matter research, materials science and the life sciences, and their use in identifying phase transformations and structural changes of defects, structure-property relationships, interfaces and surfaces etc. The journal also covers developments in crystallographic instrumentation and apparatus, theory and interpretation and numerical analysis and other related subjects, together with information on crystallographic computer programs.

View the full Wikipedia page for Journal of Applied Crystallography
↑ Return to Menu