Neutral particle in the context of "Electrical charge"

Play Trivia Questions online!

or

Skip to study material about Neutral particle in the context of "Electrical charge"

Ad spacer

⭐ Core Definition: Neutral particle

In physics, a neutral particle is a particle without an electric charge, such as a neutron.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Neutral particle in the context of Electric charge

Electric charge (symbol q, sometimes Q) is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be positive or negative. Like charges repel each other and unlike charges attract each other. An object with no net charge is referred to as electrically neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.

In an isolated system, the total charge stays the same - the amount of positive charge minus the amount of negative charge does not change over time. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms. If there are more electrons than protons in a piece of matter, it will have a negative charge, if there are fewer it will have a positive charge, and if there are equal numbers it will be neutral. Charge is quantized: it comes in integer multiples of individual small units called the elementary charge, e, about 1.602×10 C, which is the smallest charge that can exist freely. Particles called quarks have smaller charges, multiples of 1/3e, but they are found only combined in particles that have a charge that is an integer multiple of e. In the Standard Model, charge is an absolutely conserved quantum number. The proton has a charge of +e, and the electron has a charge of −e.

↑ Return to Menu

Neutral particle in the context of W and Z bosons

In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are W
, W
, and Z
. The W
 bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The Z
 boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The W
 bosons have a magnetic moment, but the Z
has none. All three of these particles are very short-lived, with a half-life of about 3×10 s. Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics.

The W bosons are named after the weak force. The physicist Steven Weinberg named the additional particle the "Z particle", and later gave the explanation that it was the last additional particle needed by the model. The W bosons had already been named, and the Z bosons were named for having zero electric charge.

↑ Return to Menu

Neutral particle in the context of Stream of particles

A particle beam is a stream of charged or neutral particles other than photons. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neutral particle beams, as only the first type can be manipulated to a sufficient extent by devices based on electromagnetism. The manipulation and diagnostics of charged particle beams at high kinetic energies using particle accelerators are main topics of accelerator physics.

↑ Return to Menu

Neutral particle in the context of Wolfgang Pauli

Wolfgang Ernst Pauli (/ˈpɔːli/ PAW-lee; German: [ˈpaʊ̯li] ; 25 April 1900 – 15 December 1958) was an Austrian–Swiss theoretical physicist and a pioneer of quantum mechanics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics "for the discovery of the Exclusion Principle, also called the Pauli Principle". The discovery involved spin theory, which is the basis of a theory of the structure of matter.

To preserve the conservation of energy in beta decay, Pauli proposed the existence of a small neutral particle, dubbed the neutrino by Enrico Fermi, in 1930. Neutrinos were first detected in 1956.

↑ Return to Menu