Neptunium in the context of Neutron detector


Neptunium in the context of Neutron detector

Neptunium Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Neptunium in the context of "Neutron detector"


⭐ Core Definition: Neptunium

Neptunium is a chemical element; it has symbol Np and atomic number 93. A radioactive actinide metal, neptunium is the first transuranic element. It is named after Neptune, the planet beyond Uranus in the Solar System, which uranium is named after. A neptunium atom has 93 protons and 93 electrons, of which seven are valence electrons. Neptunium metal is silvery and tarnishes when exposed to air. The element occurs in three allotropic forms and it normally exhibits five oxidation states, ranging from +3 to +7. Like all actinides, it is radioactive, poisonous, pyrophoric, and capable of accumulating in bones, which makes the handling of neptunium dangerous.

Although many false claims of its discovery were made over the years, the element was first synthesized by Edwin McMillan and Philip H. Abelson at the Berkeley Radiation Laboratory in 1940. Since then, most neptunium has been and still is produced by neutron irradiation of uranium in nuclear reactors. The vast majority is generated as a by-product in conventional nuclear power reactors. While neptunium itself has no commercial uses at present, it is used as a precursor for the formation of plutonium-238, which is in turn used in radioisotope thermal generators to provide electricity for spacecraft. Neptunium has also been used in detectors of high-energy neutrons.

↓ Menu
HINT:

In this Dossier

Neptunium in the context of Plutonium

Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric. It is radioactive and can accumulate in bones, which makes the handling of plutonium dangerous.

Plutonium was first synthesized and isolated in late 1940 and early 1941, by deuteron bombardment of uranium-238 in the 1.5-metre (60 in) cyclotron at the University of California, Berkeley. First, neptunium-238 (half-life 2.1 days) was synthesized, which then beta-decayed to form the new element with atomic number 94 and atomic weight 238 (half-life 88 years). Since uranium had been named after the planet Uranus and neptunium after the planet Neptune, element 94 was named after Pluto, which at the time was also considered a planet. Wartime secrecy prevented the University of California team from publishing its discovery until 1948.

View the full Wikipedia page for Plutonium
↑ Return to Menu

Neptunium in the context of Synthetic element

A synthetic element is a known chemical element that does not occur naturally on Earth: it has been created by human manipulation of fundamental particles in a nuclear reactor, a particle accelerator, or the explosion of an atomic bomb; thus, it is called "synthetic", "artificial", or "man-made". The synthetic elements are those with atomic numbers 95–118, as shown in purple on the accompanying periodic table: these 24 elements were first created between 1944 and 2010. The mechanism for the creation of a synthetic element is to force additional protons into the nucleus of an element with an atomic number lower than 95. All known (see: Island of stability) synthetic elements are unstable, but they decay at widely varying rates; the half-lives of their longest-lived isotopes range from microseconds to millions of years.

Five more elements that were first created artificially are strictly speaking not synthetic because they were later found in nature in trace quantities: technetium (43Tc), promethium (61Pm), astatine (85At), neptunium (93Np), and plutonium (94Pu); although they are sometimes classified as synthetic alongside exclusively artificial elements. The first, technetium, was created in 1937. Plutonium, first synthesized in 1940, is another such element. It is the element with the largest number of protons (atomic number) to occur in nature, but it does so in such tiny quantities that it is far more practical to synthesize it. Plutonium is known mainly for its use in atomic bombs and nuclear reactors.

View the full Wikipedia page for Synthetic element
↑ Return to Menu

Neptunium in the context of Neptunium-238

Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be synthesized and identified was Np in 1940, produced by bombarding
U
with neutrons to produce
U
, which then underwent beta decay to
Np
.

Trace quantities are found in nature from neutron capture reactions by uranium atoms, a fact not discovered until 1951.

View the full Wikipedia page for Neptunium-238
↑ Return to Menu