Myocyte in the context of "Metazoan"

Play Trivia Questions online!

or

Skip to study material about Myocyte in the context of "Metazoan"

Ad spacer

⭐ Core Definition: Myocyte

A muscle cell, also known as a myocyte, is a mature contractile cell in the muscle of an animal. In humans and other vertebrates there are three types: skeletal, smooth, and cardiac (cardiomyocytes). A skeletal muscle cell is long and threadlike with many nuclei and is called a muscle fiber. Muscle cells develop from embryonic precursor cells called myoblasts.

Skeletal muscle cells form by fusion of myoblasts to produce multinucleated cells (syncytia) in a process known as myogenesis. Skeletal muscle cells and cardiac muscle cells both contain myofibrils and sarcomeres and form a striated muscle tissue.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Myocyte in the context of Animal

Animals are multicellular, eukaryotic organisms comprising the biological kingdom Animalia (/ˌænɪˈmliə/). With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Animals form a clade, meaning that they arose from a single common ancestor. Over 1.5 million living animal species have been described, of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates. It has been estimated there are as many as 7.77 million animal species on Earth. Animal body lengths range from 8.5 μm (0.00033 in) to 33.6 m (110 ft). They have complex ecologies and interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology, and the study of animal behaviour is known as ethology.

The animal kingdom is divided into five major clades, namely Porifera, Ctenophora, Placozoa, Cnidaria and Bilateria. Most living animal species belong to the clade Bilateria, a highly proliferative clade whose members have a bilaterally symmetric and significantly cephalised body plan, and the vast majority of bilaterians belong to two large clades: the protostomes, which includes organisms such as arthropods, molluscs, flatworms, annelids and nematodes; and the deuterostomes, which include echinoderms, hemichordates and chordates, the latter of which contains the vertebrates. The much smaller basal phylum Xenacoelomorpha have an uncertain position within Bilateria.

↑ Return to Menu

Myocyte in the context of Soft-bodied organism

Soft-bodied organisms are organisms that lack rigid physical skeletons or frame, roughly corresponds to the group Vermes as proposed by Carl von Linné. The term typically refers to non-panarthropod invertebrates from the kingdom Animalia, although many non-vascular plants (mosses and algae), fungi (such as jelly fungus), lichens and slime molds can also be seen as soft-bodied organisms by definition.

All animals have a muscular system of some sort but, since myocytes are tensile actuator units that can only contract and pull but never push, some animals evolved rigid body parts upon which the muscles can attach and act as levers/cantilevers to redirect force and produce locomotive propulsion. These rigid parts also serve as structural elements to resist gravity and ambient pressure, as well as sometimes provide protective surfaces shielding internal structures from trauma and exposure to external thermal, chemical and pathogenic insults. Such physical structures are the commonly referred "skeletons", which may be internal (as in vertebrates, echinoderms and sponges) or external (as in arthropods and non-coleoid molluscs). However, many soft-bodied animals do still have a functional skeleton maintained by body fluid hydrostatics known as a hydroskeleton, such as that of earthworms, jellyfish, tapeworms, squids and an enormous variety of invertebrates from almost every phyla of the animal kingdom; and many have hardened teeth that allow them to chew, bite and burrow despite the rest of body being soft.

↑ Return to Menu

Myocyte in the context of Myelin

Myelin (/ˈm.əlɪn/ MY-ə-lin) is a lipid-rich material that in most vertebrates surrounds the axons of neurons to insulate them and increase the rate at which electrical impulses (called action potentials) pass along the axon. The myelinated axon can be likened to an electrical wire (the axon) with insulating material (myelin) around it. However, unlike the plastic covering on an electrical wire, myelin does not form a single long sheath over the entire length of the axon. Myelin ensheaths part of an axon known as an internodal segment, in multiple myelin layers of a tightly regulated internodal length.

The ensheathed segments are separated at regular short unmyelinated intervals, called nodes of Ranvier. Each node of Ranvier is around one micrometre long. Nodes of Ranvier enable a much faster rate of conduction known as saltatory conduction where the action potential recharges at each node to jump over to the next node, and so on until it reaches the axon terminal. At the terminal the action potential provokes the release of neurotransmitters across the synapse, which bind to receptors on the post-synaptic cell such as another neuron, myocyte or secretory cell.

↑ Return to Menu

Myocyte in the context of Motor neuron

A motor neuron (or motoneuron), also known as efferent neuron is a neuron that allows for both voluntary and involuntary movements of the body through muscles and glands. Its cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. There are two types of motor neuronupper motor neurons and lower motor neurons. Axons from upper motor neurons synapse onto interneurons in the spinal cord and occasionally directly onto lower motor neurons. The axons from the lower motor neurons are efferent nerve fibers that carry signals from the spinal cord to the effectors. Types of lower motor neurons are alpha motor neurons, beta motor neurons, and gamma motor neurons.

A single motor neuron may innervate many muscle fibres and a muscle fibre can undergo many action potentials in the time taken for a single muscle twitch. Innervation takes place at a neuromuscular junction and twitches can become superimposed as a result of summation or a tetanic contraction. Individual twitches can become indistinguishable, and tension rises smoothly eventually reaching a plateau.

↑ Return to Menu

Myocyte in the context of Myostatin

Myostatin (also known as growth differentiation factor 8, abbreviated GDF8) is a protein that in humans is encoded by the MSTN gene. Myostatin is a myokine that is produced and released by myocytes and acts on muscle cells to inhibit muscle growth. Myostatin is a secreted growth differentiation factor that is a member of the TGF beta protein family.

Myostatin is assembled and produced in skeletal muscle before it is released into the blood stream. Most of the data regarding the effects of myostatin comes from studies performed on mice.

↑ Return to Menu

Myocyte in the context of Action potential

An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. This "depolarization" (physically, a reversal of the polarization of the membrane) then causes adjacent locations to similarly depolarize. Action potentials occur in several types of excitable cells, which include animal cells like neurons and muscle cells, as well as some plant cells. Certain endocrine cells such as pancreatic beta cells, and certain cells of the anterior pituitary gland are also excitable cells.

In neurons, action potentials play a central role in cell–cell communication by providing for—or with regard to saltatory conduction, assisting—the propagation of signals along the neuron's axon toward synaptic boutons situated at the ends of an axon; these signals can then connect with other neurons at synapses, or to motor cells or glands. In other types of cells, their main function is to activate intracellular processes. In muscle cells, for example, an action potential is the first step in the chain of events leading to contraction. In beta cells of the pancreas, they provoke release of insulin. The temporal sequence of action potentials generated by a neuron is called its "spike train". A neuron that emits an action potential, or nerve impulse, is often said to "fire".

↑ Return to Menu