Murein in the context of "Bacterial"

Play Trivia Questions online!

or

Skip to study material about Murein in the context of "Bacterial"




⭐ Core Definition: Murein

Peptidoglycan, murein or mucopeptide is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like layer (sacculus) that surrounds the bacterial cytoplasmic membrane. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). Attached to the N-acetylmuramic acid is an oligopeptide chain made of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer. Peptidoglycan serves a structural role in the bacterial cell wall, giving structural strength, as well as counteracting the osmotic pressure of the cytoplasm. This repetitive linking results in a dense peptidoglycan layer which is critical for maintaining cell form and withstanding high osmotic pressures, and it is regularly replaced by peptidoglycan production. Peptidoglycan hydrolysis and synthesis are two processes that must occur in order for cells to grow and multiply, a technique carried out in three stages: clipping of current material, insertion of new material, and re-crosslinking of existing material to new material.

The peptidoglycan layer is substantially thicker in gram-positive bacteria (20 to 80 nanometers) than in gram-negative bacteria (7 to 8 nanometers). Depending on pH growth conditions, the peptidoglycan forms around 40 to 90% of the cell wall's dry weight of gram-positive bacteria but only around 10% of gram-negative strains. Thus, presence of high levels of peptidoglycan is the primary determinant of the characterisation of bacteria as gram-positive. In gram-positive strains, it is important in attachment roles and serotyping purposes. For both gram-positive and gram-negative bacteria, particles of approximately 2 nm can pass through the peptidoglycan.

↓ Menu

In this Dossier

Murein in the context of Otto Kandler

Otto Kandler (23 October 1920 in Deggendorf – 29 August 2017 in Munich, Bavaria) was a German botanist and microbiologist. Until his retirement in 1986 he was professor of botany at the Ludwig Maximilian University of Munich.

His most important research topics were photosynthesis, plant carbohydrate metabolism, analysis of the structure of bacterial cell walls (murein/peptidoglycan), the systematics of Lactobacillus, and the chemotaxonomy of plants and microorganisms.He presented the first experimental evidence for the existence of photophosphorylation in vivo. His discovery of the basic differences between the cell walls of bacteria and archaea (up to 1990 called "archaebacteria") convinced him that archaea represent an autonomous group of organisms distinct from bacteria. This was the basis for his cooperation with Carl Woese and made him the founder of research on the Archaea in Germany. In 1990, together with Woese, he proposed the three domains of life: Bacteria, Archaea, Eucarya. Finally, on the basis of his lifelong interest in the early evolution and diversification of life on this planet, Kandler presented his pre-cell theory, suggesting that the three domains of life did not emerge from an ancestral cell, e.g. the last universal common ancestor (LUCA), but from a population of pre-cells.

↑ Return to Menu