Multiple system atrophy in the context of "Basal ganglia"

Play Trivia Questions online!

or

Skip to study material about Multiple system atrophy in the context of "Basal ganglia"

Ad spacer

⭐ Core Definition: Multiple system atrophy

Multiple system atrophy (MSA) is a rare neurodegenerative disorder characterized by tremors, slow movement, muscle rigidity, postural instability (collectively known as parkinsonism), autonomic dysfunction and ataxia. This is caused by progressive degeneration of neurons in several parts of the brain including the basal ganglia, inferior olivary nucleus, and cerebellum. MSA was first described in 1960 by Milton Shy and Glen Drager and was then known as Shy–Drager syndrome.

Many people affected by MSA experience dysfunction of the autonomic nervous system, which commonly manifests as orthostatic hypotension, impotence, loss of sweating, dry mouth and urinary retention and incontinence. Palsy of the vocal cords is an important and sometimes initial clinical manifestation of the disorder.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Multiple system atrophy in the context of Neurodegenerative disease

A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, tauopathies, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies (like proteinopathy) and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.

Within neurodegenerative diseases, it is estimated that 55 million people worldwide had dementia in 2019, and that by 2050 this figure will increase to 139 million people.

↑ Return to Menu

Multiple system atrophy in the context of Proteinopathy

In medicine, proteinopathy ([pref. protein]; -pathy [suff. disease]; proteinopathies pl.; proteinopathic adj), or proteopathy, protein conformational disorder, or protein misfolding disease, is a class of diseases in which certain proteins become structurally abnormal, and thereby disrupt the function of cells, tissues and organs of the body.

Often the proteins fail to fold into their normal configuration; in this misfolded state, the proteins can become toxic in some way (a toxic gain-of-function) or they can lose their normal function. The proteinopathies include such diseases as Creutzfeldt–Jakob disease (and a variant associated with mad cow disease) and other prion diseases, Alzheimer's disease, Parkinson's disease, amyloidosis, multiple system atrophy, and a wide range of other disorders. The term proteopathy was first proposed in 2000 by Lary Walker and Harry LeVine.

↑ Return to Menu

Multiple system atrophy in the context of Dysautonomia

Dysautonomia, autonomic failure, or autonomic dysfunction is a condition in which the autonomic nervous system (ANS) does not work properly. This condition may affect the functioning of the heart, bladder, intestines, sweat glands, pupils, and blood vessels. Dysautonomia has many causes, not all of which may be classified as neuropathic. A number of conditions can feature dysautonomia, such as Parkinson's disease, Long COVID, multiple system atrophy, dementia with Lewy bodies, Ehlers–Danlos syndromes, autoimmune autonomic ganglionopathy and autonomic neuropathy, HIV/AIDS, mitochondrial cytopathy, pure autonomic failure, autism, and postural orthostatic tachycardia syndrome.

Diagnosis is made by functional testing of the ANS, focusing on the affected organ system. Investigations may be performed to identify underlying disease processes that may have led to the development of symptoms or autonomic neuropathy. Symptomatic treatment is available for many symptoms associated with dysautonomia, and some disease processes can be directly treated. Depending on the severity of the dysfunction, dysautonomia can range from being nearly symptomless and transient to disabling and/or life-threatening.

↑ Return to Menu

Multiple system atrophy in the context of Lewy bodies

Lewy bodies are inclusion bodies – abnormal aggregations of protein – that develop inside neurons affected by Parkinson's disease, the Lewy body dementias (Parkinson's disease dementia and dementia with Lewy bodies (DLB)), and in several other disorders such as multiple system atrophy. The defining proteinaceous component of Lewy bodies is alpha-synuclein (α-synuclein), which aggregates to form Lewy bodies within neuronal cell bodies, and Lewy neurites in neuronal processes (axons or dendrites). In some disorders, alpha-synuclein also forms aggregates in glial cells that are referred to as 'glial cytoplasmic inclusions'; together, diseases involving Lewy bodies, Lewy neurites and glial cytoplasmic inclusions are called 'synucleinopathies'.

Lewy bodies appear as spherical masses in the neuronal cytoplasm that can displace other cellular components such as the nucleus and neuromelanin. A given neuron may contain one or more Lewy bodies. There are two main kinds of Lewy bodies – classical (brainstem-type) and cortical-type. Classical Lewy bodies occur most commonly in pigmented neurons of the brainstem, such as the substantia nigra and locus coeruleus, although they are not restricted to pigmented neurons. They are strongly eosinophilic structures ranging from 8-30 microns in diameter, and when viewed with a light microscope they are seen to consist of a dense core that is often surrounded by a pale shell. Electron microscopic analyses found that the core consists of a compact mass of haphazard filaments and various particles surrounded by a diffuse corona of radiating filaments. In contrast, cortical-type Lewy bodies are smaller, only faintly eosinophilic, and devoid of a surrounding halo with radial filaments. Cortical-type Lewy bodies occur in multiple regions of the cortex and in the amygdala. Cortical Lewy bodies are a distinguishing feature of dementia with Lewy bodies, but they may occasionally be seen in ballooned neurons characteristic of behavioural variant frontotemporal dementia and corticobasal degeneration, as well as in patients with other tauopathies.

↑ Return to Menu

Multiple system atrophy in the context of Synucleinopathies

Synucleinopathies are neurodegenerative diseases characterised by the abnormal accumulation of aggregates of alpha-synuclein protein in neurons, nerve fibres or glial cells. The synucleinopathies include Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Other rare disorders, such as various neuroaxonal dystrophies, also have α-synuclein pathologies.

↑ Return to Menu