Multiple independently targetable reentry vehicle in the context of "Ballistic missiles"

Play Trivia Questions online!

or

Skip to study material about Multiple independently targetable reentry vehicle in the context of "Ballistic missiles"

Ad spacer

⭐ Core Definition: Multiple independently targetable reentry vehicle

A multiple independently targetable reentry vehicle (MIRV) is an exoatmospheric ballistic missile payload containing several warheads, each capable of being aimed to hit a different target. The concept is almost invariably associated with intercontinental ballistic missiles carrying thermonuclear warheads, even if not strictly being limited to them. An intermediate case is the multiple reentry vehicle (MRV) missile which carries several warheads which are dispersed but not individually aimed. All nuclear-weapon states except Pakistan and North Korea are currently confirmed to have deployed MIRV missile systems.

The first true MIRV design was the Minuteman III, first successfully tested in 1968 and introduced into actual use in 1970. The Minuteman III held three smaller W62 warheads, with yields of about 170 kilotons of TNT (710 TJ) each in place of the single 1.2 megatons of TNT (5.0 PJ) W56 used on the Minuteman II. From 1970 to 1975, the United States would remove approximately 550 earlier versions of the Minuteman ICBM in the Strategic Air Command's (SAC) arsenal and replace them with the new Minuteman IIIs outfitted with a MIRV payload, increasing their overall effectiveness. The smaller power of the warheads used (W62, W78 and W87) was offset by increasing the accuracy of the system, allowing it to attack the same hard targets as the larger, less accurate, W56. The MMIII was introduced specifically to address the Soviet construction of an anti-ballistic missile (ABM) system around Moscow; MIRV allowed the US to overwhelm any conceivable ABM system without increasing the size of their own missile fleet. The Soviets responded by adding MIRV to their R-36 design, first with three warheads in 1975, and eventually up to ten in later versions. While the United States phased out the use of MIRVs in ICBMs in 2014 to comply with New START, Russia continues to develop new ICBM designs using the technology.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Multiple independently targetable reentry vehicle in the context of Nuclear weapon yield

The explosive yield of a nuclear weapon is the amount of energy released such as blast, thermal, and nuclear radiation, when that particular nuclear weapon is detonated. It is usually expressed as a TNT equivalent, the standardized equivalent mass of trinitrotoluene (TNT) which would produce the same energy discharge if detonated, either in kilotonnes (symbol kt, thousands of tonnes of TNT), in megatonnes (Mt, millions of tonnes of TNT). It is also sometimes expressed in terajoules (TJ); an explosive yield of one terajoule is equal to 0.239 kilotonnes of TNT. Because the accuracy of any measurement of the energy released by TNT has always been problematic, the conventional definition is that one kilotonne of TNT is held simply to be equivalent to 10 calories.

The yield-to-weight ratio is the amount of weapon yield compared to the mass of the weapon. The practical maximum yield-to-weight ratio for fusion weapons (thermonuclear weapons) has been estimated to six megatonnes of TNT per tonne of bomb mass (25 TJ/kg). Yields of 5.2 megatonnes/tonne and higher have been reported for large weapons constructed for single-warhead use in the early 1960s. Since then, the smaller warheads needed to achieve the increased net damage efficiency (bomb damage/bomb mass) of multiple warhead systems have resulted in increases in the yield/mass ratio for single modern warheads.

↑ Return to Menu

Multiple independently targetable reentry vehicle in the context of Ballistic missile

A ballistic missile is a type of missile that follows a ballistic trajectory and is powered only during a relatively brief initial period—most of the flight is unpowered. Short-range ballistic missiles (SRBM) typically stay within the Earth's atmosphere, while most larger missiles travel outside the atmosphere. The type of ballistic missile with the greatest range is an intercontinental ballistic missile (ICBM). The largest ICBMs are capable of full orbital flight.

These missiles are in a distinct category from cruise missiles, which are aerodynamically guided in powered flight and thus restricted to the atmosphere.

↑ Return to Menu

Multiple independently targetable reentry vehicle in the context of Submarine-launched ballistic missile

A submarine-launched ballistic missile (SLBM) is a ballistic missile capable of being launched from submarines. Modern variants usually deliver multiple independently targetable reentry vehicles (MIRVs), each of which carries a nuclear warhead and allows a single launched missile to strike several targets. Submarine-launched ballistic missiles operate in a different way from submarine-launched cruise missiles.

Modern submarine-launched ballistic missiles are closely related to intercontinental ballistic missiles (ICBMs), with ranges of over 5,500 kilometres (3,000 nmi), and in many cases SLBMs and ICBMs may be part of the same family of weapons.

↑ Return to Menu

Multiple independently targetable reentry vehicle in the context of Intercontinental ballistic missile

An intercontinental ballistic missile (ICBM) is a ballistic missile with a range greater than 5,500 kilometres (3,400 mi), primarily designed for nuclear weapons delivery (delivering one or more thermonuclear warheads). Conventional, chemical, and biological weapons can also be delivered with varying effectiveness but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicles (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target. The United States, Russia, China, France, India, the United Kingdom, Israel, and North Korea are the only countries known to have operational ICBMs. Pakistan is the only nuclear-armed state that does not possess ICBMs.

Early ICBMs had limited precision, which made them suitable for use only against the largest targets, such as cities. They were seen as a "safe" basing option, one that would keep the deterrent force close to home where it would be difficult to attack. Attacks against military targets (especially hardened ones) demanded the use of a more precise, crewed bomber. Second- and third-generation designs (such as the LGM-118 Peacekeeper) dramatically improved accuracy to the point where even the smallest point targets can be successfully attacked.

↑ Return to Menu

Multiple independently targetable reentry vehicle in the context of W88

The W88 is an American thermonuclear warhead, with an estimated yield of 475 kilotons of TNT (1,990 terajoules), and is small enough to fit on missiles with multiple independently targetable reentry vehicles (MIRV). The W88 was designed at the Los Alamos National Laboratory in the 1970s and first placed into service in 1989. The director of Los Alamos who had presided over its development described it as "the most advanced U.S. nuclear warhead". The latest version is the W88 ALT 370, the first unit of which came into production on 1 July 2021, after 11 years of development. The Trident II, a submarine-launched ballistic missile (SLBM) can be armed with up to eight W88 warheads.

↑ Return to Menu