Motor cortex in the context of "Supplementary motor area"

Play Trivia Questions online!

or

Skip to study material about Motor cortex in the context of "Supplementary motor area"

Ad spacer

⭐ Core Definition: Motor cortex

The motor cortex comprises interconnected fields on the posterior frontal lobe—chiefly Brodmann area 4 (primary motor cortex, M1) and area 6 (premotor cortex and supplementary motor areas)—that plan, select and execute voluntary movements. These regions transform goals into patterned activity in descending pathways to brainstem and spinal motor circuits, enabling dexterous eye, face and limb actions. Modern work shows overlapping, action‑type representations rather than a strictly point‑to‑point "homunculus," and highlights direct cortico‑motoneuronal projections that underwrite fine finger control. Clinically, motor‑cortical organization shapes deficits after stroke and neurodegenerative disease and guides mapping for neurosurgery and neurotechnology.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Motor cortex in the context of Human brain

The human brain is the central organ of the nervous system, and with the spinal cord, comprises the central nervous system. It consists of the cerebrum, the brainstem and the cerebellum. The brain controls most of the activities of the body, processing, integrating, and coordinating the information it receives from the sensory nervous system. The brain integrates sensory information and coordinates instructions sent to the rest of the body.

The cerebrum, the largest part of the human brain, consists of two cerebral hemispheres. Each hemisphere has an inner core composed of white matter, and an outer surface – the cerebral cortex – composed of grey matter. The cortex has an outer layer, the neocortex, and an inner allocortex. The neocortex is made up of six neuronal layers, while the allocortex has three or four. Each hemisphere is divided into four lobes – the frontal, parietal, temporal, and occipital lobes. The frontal lobe is associated with executive functions including self-control, planning, reasoning, and abstract thought, while the occipital lobe is dedicated to vision. Within each lobe, cortical areas are associated with specific functions, such as the sensory, motor, and association regions. Although the left and right hemispheres are broadly similar in shape and function, some functions are associated with one side, such as language in the left and visual-spatial ability in the right. The hemispheres are connected by commissural nerve tracts, the largest being the corpus callosum.

↑ Return to Menu

Motor cortex in the context of Neocortex

The neocortex, also called the neopallium, isocortex or six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, spatial reasoning, and language. The neocortex is further subdivided into the true isocortex and the proisocortex.

In the human brain, the cerebral cortex consists of the larger neocortex and the smaller allocortex, respectively taking up 90% and 10%. The neocortex is made up of six layers, labelled from the outermost inwards, I to VI.

↑ Return to Menu

Motor cortex in the context of Frontal lobe

The frontal lobe is the largest lobe of the vertebrate brain and the most anterior lobe of the cerebral hemispheres. The anatomical groove known as the central sulcus separates the frontal lobe from the parietal lobe, and the deeper anatomical groove called the lateral sulcus separates the frontal lobe from the temporal lobe. The most anterior ventral, orbital end of the frontal lobe is known as the frontal pole, which is one of the three so-called poles of the cerebrum.

The outer, multifurrowed surface of the frontal lobe is called the frontal cortex. Like all cortical tissue, the frontal cortex is a thin layer of gray matter making up the outer portion of the brain. The frontal cortex is further subdivided into several anatomical and functional structures, including those of the motor cortex (the premotor cortex, the nonprimary motor cortex, the primary motor cortex) and the prefrontal cortex (e.g., the dorsolateral prefrontal cortex).

↑ Return to Menu

Motor cortex in the context of Motor neuron

A motor neuron (or motoneuron), also known as efferent neuron is a neuron that allows for both voluntary and involuntary movements of the body through muscles and glands. Its cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. There are two types of motor neuronupper motor neurons and lower motor neurons. Axons from upper motor neurons synapse onto interneurons in the spinal cord and occasionally directly onto lower motor neurons. The axons from the lower motor neurons are efferent nerve fibers that carry signals from the spinal cord to the effectors. Types of lower motor neurons are alpha motor neurons, beta motor neurons, and gamma motor neurons.

A single motor neuron may innervate many muscle fibres and a muscle fibre can undergo many action potentials in the time taken for a single muscle twitch. Innervation takes place at a neuromuscular junction and twitches can become superimposed as a result of summation or a tetanic contraction. Individual twitches can become indistinguishable, and tension rises smoothly eventually reaching a plateau.

↑ Return to Menu

Motor cortex in the context of Premotor cortex

The premotor cortex is an area of the motor cortex lying within the frontal lobe of the brain just anterior to the primary motor cortex. It occupies part of Brodmann area 6. It has been studied mainly in primates, including monkeys and humans.

The functions of the premotor cortex are diverse and not fully understood. It projects directly to the spinal cord and therefore may play a role in the direct control of behavior, with a relative emphasis on the trunk muscles of the body. It may also play a role in planning movement, in the spatial guidance of movement, in the sensory guidance of movement, in understanding the actions of others, and in using abstract rules to perform specific tasks. Different subregions of the premotor cortex have different properties and presumably emphasize different functions. Nerve signals generated in the premotor cortex cause much more complex patterns of movement than the discrete patterns generated in the primary motor cortex.

↑ Return to Menu

Motor cortex in the context of Corticobulbar tract

The corticobulbar (or corticonuclear) tract is a two-neuron white matter motor pathway connecting the motor cortex in the cerebral cortex to the medullary pyramids, which are part of the brainstem's medulla oblongata (also called "bulbar") region, and are primarily involved in carrying the motor function of the non-oculomotor cranial nerves, like muscles of the face, head and neck. The corticobulbar tract is one of the pyramidal tracts, the other being the corticospinal tract.

↑ Return to Menu

Motor cortex in the context of Supplementary motor cortex

The supplementary motor area (SMA) is a part of the motor cortex of primates that contributes to the control of movement. It is located on the midline surface of the hemisphere just in front of (anterior to) the primary motor cortex leg representation. In monkeys, the SMA contains a rough map of the body. In humans, the body map is not apparent. Neurons in the SMA project directly to the spinal cord and may play a role in the direct control of movement. Possible functions attributed to the SMA include the postural stabilization of the body, the coordination of both sides of the body such as during bimanual action, the control of movements that are internally generated rather than triggered by sensory events, and the control of sequences of movements. All of these proposed functions remain hypotheses. The precise role or roles of the SMA is not yet known.

For the discovery of the SMA and its relationship to other motor cortical areas, see the main article on the motor cortex.

↑ Return to Menu