Morse code in the context of American Morse code


Morse code in the context of American Morse code

Morse code Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Morse code in the context of "American Morse code"


⭐ Core Definition: Morse code

Morse code is a telecommunications method which encodes text characters as standardized sequences of two different signal durations, called dots and dashes, or dits and dahs. It is named after Samuel Morse, one of several developers of the system. Morse's preliminary proposal for a telegraph code was replaced by an alphabet-based code developed by Alfred Vail, the engineer working with Morse. Vail's version was used for commercial telegraphy in North America. Friedrich Gerke simplified Vail's code to produce the code adopted in Europe, and most of the alphabetic part of the (ITU) "Morse" is copied from Gerke's revision.

The ITU International Morse code encodes the 26 basic Latin letters A to Z, one accented Latin letter (É), the Indo-Arabic numerals 0 to 9, and some punctuation and messaging procedural signals (prosigns). There is no distinction between upper and lower case letters. Each code symbol is formed by a sequence of dits and dahs. The dit duration can vary for signal clarity and operator skill, but for any one message, once the rhythm is established, a half-beat is the basic unit of time measurement. The duration of a dah is three times the duration of a dit. Each dit or dah within an encoded character is followed by a period of signal absence, called a space, equal to the dit duration. The letters of a word are separated by a space of duration equal to three dits, and words are separated by a space equal to seven dits.

↓ Menu
HINT:

In this Dossier

Morse code in the context of Second Industrial Revolution

The Second Industrial Revolution, also known as the Technological Revolution, was a phase of rapid scientific discovery, standardisation, mass production and industrialisation from the late 19th century into the early 20th century. The First Industrial Revolution, which ended in the middle of the 19th century, was punctuated by a slowdown in important inventions before the Second Industrial Revolution in 1870. Though a number of its events can be traced to earlier innovations in manufacturing, such as the establishment of a machine tool industry, the development of methods for manufacturing interchangeable parts, as well as the invention of the Bessemer process and open hearth furnace to produce steel, later developments heralded the Second Industrial Revolution, which is generally dated between 1870 and 1914 when World War I commenced.

Advancements in manufacturing and production technology enabled the widespread adoption of technological systems such as telegraph and railroad networks, gas and water supply, and sewage systems, which had earlier been limited to a few select cities. The enormous expansion of rail and telegraph lines after 1870 allowed unprecedented movement of people and ideas, which culminated in a new wave of colonialism and globalization. In the same time period, new technological systems were introduced, most significantly electrical power and telephones. The Second Industrial Revolution continued into the 20th century with early factory electrification and the production line; it ended at the beginning of World War I.

View the full Wikipedia page for Second Industrial Revolution
↑ Return to Menu

Morse code in the context of Telegraph

Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas pigeon post is not. Ancient signalling systems, although sometimes quite extensive and sophisticated as in China, were generally not capable of transmitting arbitrary text messages. Possible messages were fixed and predetermined, so such systems are thus not true telegraphs.

The earliest true telegraph put into widespread use was the Chappe telegraph, an optical telegraph invented by Claude Chappe in the late 18th century. The system was used extensively in France, and European nations occupied by France, during the Napoleonic era. The electric telegraph started to replace the optical telegraph in the mid-19th century. It was first taken up in Britain in the form of the Cooke and Wheatstone telegraph, initially used mostly as an aid to railway signalling. This was quickly followed by a different system developed in the United States by Samuel Morse. The electric telegraph was slower to develop in France due to the established optical telegraph system, but an electrical telegraph was put into use with a code compatible with the Chappe optical telegraph. The Morse system was adopted as the international standard in 1865, using a modified Morse code developed in Germany in 1848.

View the full Wikipedia page for Telegraph
↑ Return to Menu

Morse code in the context of Samuel Morse

Samuel Finley Breese Morse (April 27, 1791 – April 2, 1872) was an American inventor and painter. After establishing his reputation as a portrait painter, Morse, in his middle age, contributed to the invention of a single-wire telegraph system based on European telegraphs. He was a co-developer and the namesake of Morse code in 1837 and helped to develop the commercial use of telegraphy.

View the full Wikipedia page for Samuel Morse
↑ Return to Menu

Morse code in the context of Telegraph key

A telegraph key, clacker, tapper or morse key is a specialized electrical switch used by a trained operator to transmit text messages in Morse code in a telegraphy system. Keys are used in all forms of electrical telegraph systems, including landline (also called wire) telegraphy and radio (also called wireless) telegraphy. An operator uses the telegraph key to send electrical pulses (or in the case of modern CW, unmodulated radio waves) of two different lengths: short pulses, called dots or dits, and longer pulses, called dashes or dahs. These pulses encode the letters and other characters that spell out the message.

View the full Wikipedia page for Telegraph key
↑ Return to Menu

Morse code in the context of Yes and no

Yes and no, or similar word pairs, are expressions of the affirmative and the negative, respectively, in several languages, including English. Some languages make a distinction between answers to affirmative versus negative questions and may have three-form or four-form systems. English originally used a four-form system up to and including Early Middle English. Modern English uses a two-form system consisting of yes and no. It exists in many facets of communication, such as: eye blink communication, head movements, Morse code, and sign language. Some languages, such as Latin, do not have yesno word systems.

Answering a "yes or no" question with single words meaning yes or no is by no means universal. About half the world's languages typically employ an echo response: repeating the verb in the question in an affirmative or a negative form. Some of these also have optional words for yes and no, like Hungarian, Russian, and Portuguese. Others simply do not have designated yes and no words, like Welsh, Irish, Latin, Thai, and Chinese. Echo responses avoid the issue of what an unadorned yes means in response to a negative question. Yes and no can be used as responses to a variety of situations – but are better suited in response to simple questions. While a yes response to the question "You don't like strawberries?" is ambiguous in English, the Welsh response ydw (I am) has no ambiguity.

View the full Wikipedia page for Yes and no
↑ Return to Menu

Morse code in the context of Telegraph operator

A telegraphist (British English), telegrapher (American English), or telegraph operator is a person who uses a telegraph key to send and receive Morse code messages in a telegraphy system. These messages, also called telegrams, can be transmitted electronically by land lines, or wirelessly by radio.

View the full Wikipedia page for Telegraph operator
↑ Return to Menu

Morse code in the context of Signal lamp

A signal lamp (sometimes called an Aldis lamp or a Morse lamp) is a visual signaling device for optical communication by flashes of a lamp, typically using Morse code. The idea of flashing dots and dashes from a lantern was first put into practice by Captain Philip Howard Colomb, of the Royal Navy, in 1867. Colomb's design used limelight for illumination, and his original code was not the same as Morse code. During World War I, German signalers used optical Morse transmitters called Blinkgerät, with a range of up to 8 km (5 miles) at night, using red filters for undetected communications.

Modern signal lamps produce a focused pulse of light, either by opening and closing shutters mounted in front of the lamp, or by tilting a concave mirror. They continue to be used to the present day on naval vessels and for aviation light signals in air traffic control towers, as a backup device in case of a complete failure of an aircraft's radio.

View the full Wikipedia page for Signal lamp
↑ Return to Menu

Morse code in the context of Teleprinter

A teleprinter (teletypewriter, teletype or TTY) is an electromechanical device used to send and receive typed messages through various communications channels, in both point-to-point and point-to-multipoint configurations.

Initially, from 1887 at the earliest, teleprinters were used in telegraphy. Electrical telegraphy had been developed decades earlier in the late 1830s and 1840s, then using simpler Morse key equipment and telegraph operators. The introduction of teleprinters automated much of this work and eventually largely replaced skilled operators versed in Morse code with typists and machines communicating faster via Baudot code.

View the full Wikipedia page for Teleprinter
↑ Return to Menu

Morse code in the context of Optical communication

Optical communication, also known as optical telecommunication, is communication at a distance using light to carry information. It can be performed visually or by using electronic devices. The earliest basic forms of optical communication date back several millennia, while the earliest electrical device created to do so was the photophone, invented in 1880.

An optical communication system uses a transmitter, which encodes a message into an optical signal, a channel, which carries the signal to its destination, and a receiver, which reproduces the message from the received optical signal. When electronic equipment is not employed the 'receiver' is a person visually observing and interpreting a signal, which may be either simple (such as the presence of a beacon fire) or complex (such as lights using color codes or flashed in a Morse code sequence).

View the full Wikipedia page for Optical communication
↑ Return to Menu

Morse code in the context of Women's Royal Naval Service

The Women's Royal Naval Service (WRNS; popularly and officially known as the Wrens) was the women's branch of the United Kingdom's Royal Navy. First formed in 1917 for the First World War, it was disbanded in 1919, then revived in 1939 at the beginning of the Second World War, remaining active until integrated into the Royal Navy in 1993. WRNS included cooks, clerks, wireless telegraphists, radar plotters, weapons analysts, range assessors, electricians, air mechanics, ground transport vehicle drivers and motorcycle dispatch riders.

View the full Wikipedia page for Women's Royal Naval Service
↑ Return to Menu

Morse code in the context of Wireless telegraphy

Wireless telegraphy or radiotelegraphy is the transmission of text messages by radio waves, analogous to electrical telegraphy using cables. Before about 1910, the term wireless telegraphy was also used for other experimental technologies for transmitting telegraph signals without wires. In radiotelegraphy, information is transmitted by pulses of radio waves of two different lengths called "dots" and "dashes", which spell out text messages, usually in Morse code. In a manual system, the sending operator taps on a switch called a telegraph key which turns the transmitter on and off, producing the pulses of radio waves. At the receiver the pulses are audible in the receiver's speaker as beeps, which are translated back to text by an operator who knows Morse code.

Radiotelegraphy was the first means of radio communication. The first practical radio transmitters and receivers invented in 1894–1895 by Guglielmo Marconi used radiotelegraphy. It continued to be the only type of radio transmission during the first few decades of radio, called the "wireless telegraphy era" up until World War I, when the development of amplitude modulation (AM) radiotelephony allowed sound (audio) to be transmitted by radio. Beginning about 1908, powerful transoceanic radiotelegraphy stations transmitted commercial telegram traffic between countries at rates up to 200 words per minute.

View the full Wikipedia page for Wireless telegraphy
↑ Return to Menu

Morse code in the context of Low-frequency radio range

The low-frequency radio range, also known as the four-course radio range, LF/MF four-course radio range, A-N radio range, Adcock radio range, or commonly "the range", was the main navigation system used by aircraft for instrument flying in the 1930s and 1940s, until the advent of the VHF omnidirectional range (VOR), beginning in the late 1940s. It was used for en route navigation as well as instrument approaches and holds.

Based on a network of radio towers which transmitted directional radio signals, the radio range defined specific airways in the sky. Pilots navigated using low-frequency radio by listening to a stream of automated "A" and "N" Morse codes. For example, they would turn or slip the aircraft to the right when hearing an "N" stream ("dah-dit, dah-dit, ..."), to the left when hearing an "A" stream ("di-dah, di-dah, ..."), and fly straight ahead when these sounds merged to create a constant tone indicating the airplane was directly tracking the beam.

View the full Wikipedia page for Low-frequency radio range
↑ Return to Menu

Morse code in the context of Telegraph sounder

A telegraph sounder is an antique electromechanical device used as a receiver on electrical telegraph lines during the 19th century. It was invented by Alfred Vail after 1850 to replace the previous receiving device, the cumbersome Morse register and was the first practical application of the electromagnet. When a telegraph message comes in it produces an audible "clicking" sound representing the short and long keypresses – "dots" and "dashes" – which are used to represent text characters in Morse code. A telegraph operator would translate the sounds into characters representing the telegraph message.

Telegraph networks, used from the 1850s to the 1970s to transmit text messages long distances, transmitted information by pulses of current of two different lengths, called "dots" and "dashes" which spelled out text messages in Morse code. A telegraph operator at the sending end of the line would create the message by tapping on a switch called a telegraph key, which rapidly connects and breaks the circuit to a battery, sending pulses of current down the line.

View the full Wikipedia page for Telegraph sounder
↑ Return to Menu

Morse code in the context of Cryptanalysis of the Enigma

Cryptanalysis of the Enigma ciphering system enabled the western Allies in World War II to read substantial amounts of Morse-coded radio communications of the Axis powers that had been enciphered using Enigma machines. This yielded military intelligence which, along with that from other decrypted Axis radio and teleprinter transmissions, was given the codename Ultra.

The Enigma machines were a family of portable cipher machines with rotor scramblers. Good operating procedures, properly enforced, would have made the plugboard Enigma machine unbreakable to the Allies at that time.

View the full Wikipedia page for Cryptanalysis of the Enigma
↑ Return to Menu

Morse code in the context of Continuous wave

A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or particle accelerator having a continuous output, as opposed to a pulsed output.

By extension, the term continuous wave also refers to an early method of radio transmission in which a sinusoidal carrier wave is switched on and off. This is more precisely called interrupted continuous wave (ICW). Information is carried in the varying duration of the on and off periods of the signal, for example by Morse code in early radio. In early wireless telegraphy radio transmission, CW waves were also known as "undamped waves", to distinguish this method from damped wave signals produced by earlier spark gap type transmitters.

View the full Wikipedia page for Continuous wave
↑ Return to Menu

Morse code in the context of Friedrich Clemens Gerke

Friedrich Clemens Gerke (22 January 1801 – 21 May 1888) was a German writer, journalist, musician and pioneer of telegraphy who revised the Morse code in 1848. It is Gerke's version of the original (American) Morse code now known as the International Morse code and standardized by the ITU (International Telecommunication Union) which is used today.

View the full Wikipedia page for Friedrich Clemens Gerke
↑ Return to Menu