Moons in the context of "Satellite system (astronomy)"

Play Trivia Questions online!

or

Skip to study material about Moons in the context of "Satellite system (astronomy)"

Ad spacer

⭐ Core Definition: Moons

A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a derivation from the Moon of Earth.

In the Solar System, there are six planetary satellite systems, altogether comprising 419 natural satellites with confirmed orbits. Seven objects commonly considered dwarf planets by astronomers are also known to have natural satellites: Orcus, Pluto, Haumea, Quaoar, Makemake, Gonggong, and Eris. As of January 2022, there are 447 other minor planets known to have natural satellites.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Moons in the context of Venus

Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" among the planets of the Solar System for its orbit being the closest to Earth's, both being rocky planets, and having the most similar and nearly equal size, mass, and surface gravity. Venus, though, is significantly different, especially as it has no liquid water, and its atmosphere is far thicker and denser than that of any other rocky body in the Solar System. The atmosphere is composed mostly of carbon dioxide and has a thick cloud layer of sulfuric acid that spans the whole planet. At the mean surface level, the atmosphere reaches a temperature of 737 K (464 °C; 867 °F) and a pressure 92 times greater than Earth's at sea level, turning the lowest layer of the atmosphere into a supercritical fluid. From Earth, Venus is visible as a star-like point of light, appearing brighter than any other natural point of light in the sky, and as an inferior planet always relatively close to the Sun, either as the brightest "morning star" or "evening star".

The orbits of Venus and Earth make the two planets approach each other in synodic periods of 1.6 years. In the course of this, Venus comes closer to Earth than any other planet, in contrast to Mercury which stays closer over the course of an orbit to Earth than any other planet, due to its orbit being closer to the Sun. In interplanetary spaceflight from Earth, Venus is frequently used as a waypoint for gravity assists, offering a faster and more economical route. Venus has no moons and a very slow retrograde rotation about its axis, a result of competing forces of solar tidal locking and differential heating of Venus's massive atmosphere. As a result, a Venusian day is 116.75 Earth days long, about half a Venusian solar year, which is 224.7 Earth days long.

↑ Return to Menu

Moons in the context of Orbital period

The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars. It may also refer to the time it takes a satellite orbiting a planet or moon to complete one orbit.

For celestial objects in general, the orbital period is determined by a 360° revolution of one body around its primary, e.g. Earth around the Sun.

↑ Return to Menu