Moon


Moon
In this Dossier

Moon in the context of Atmospheric

An atmosphere is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. The name originates from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere'. An object acquires most of its atmosphere during its primordial epoch, either by accretion of matter or by outgassing of volatiles. The chemical interaction of the atmosphere with the solid surface can change its fundamental composition, as can photochemical interaction with the Sun. A planet retains an atmosphere for longer durations when the gravity is high and the temperature is low. The solar wind works to strip away a planet's outer atmosphere, although this process is slowed by a magnetosphere. The further a body is from the Sun, the lower the rate of atmospheric stripping.

Aside from Mercury, all Solar System planets have substantial atmospheres, as does the dwarf planet Pluto and the moon Titan. The high gravity and low temperature of Jupiter and the other gas giant planets allow them to retain massive atmospheres of mostly hydrogen and helium. Lower mass terrestrial planets orbit closer to the Sun, and so mainly retain higher density atmospheres made of carbon, nitrogen, and oxygen, with trace amounts of inert gas. Atmospheres have been detected around exoplanets such as HD 209458 b and Kepler-7b.

View the full Wikipedia page for Atmospheric
↑ Return to Menu

Moon in the context of Nebula

A nebula (Latin for 'cloud, fog'; pl.nebulae or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as the Pillars of Creation in the Eagle Nebula. In these regions, the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter and eventually become dense enough to form stars. The remaining material is then thought to form planets and other planetary system objects.

Most nebulae are of vast size; some are hundreds of light-years in diameter. A nebula that is visible to the human eye from Earth would appear larger, but no brighter, from close by. The Orion Nebula, the brightest nebula in the sky and occupying an area twice the angular diameter of the full Moon, can be viewed with the naked eye but was missed by early astronomers. Although denser than the space surrounding them, most nebulae are far less dense than any vacuum created on Earth (10 to 10 molecules per cubic centimeter) – a nebular cloud the size of the Earth would have a total mass of only a few kilograms. Earth's air has a density of approximately 10 molecules per cubic centimeter; by contrast, the densest nebulae can have densities of 10 molecules per cubic centimeter. Many nebulae are visible due to fluorescence caused by embedded hot stars, while others are so diffused that they can be detected only with long exposures and special filters. Some nebulae are variably illuminated by T Tauri variable stars.

View the full Wikipedia page for Nebula
↑ Return to Menu

Moon in the context of Mercury (planet)

Mercury is the first planet from the Sun and the smallest in the Solar System. It is a rocky planet with a trace atmosphere and a surface gravity slightly higher than that of Mars. The surface of Mercury is similar to Earth's Moon, being heavily cratered, with an expansive rupes system generated from thrust faults, and bright ray systems, formed by ejecta. Its largest crater, Caloris Planitia, has a diameter of 1,550 km (960 mi), which is about one-third the diameter of the planet (4,880 km or 3,030 mi). Being the most inferior orbiting planet, it always appears close to the sun in Earth's sky, either as a "morning star" or an "evening star". It is the planet with the highest delta-v required for travel from Earth, as well as to and from the other planets in the Solar System.

Mercury's sidereal year (88.0 Earth days) and sidereal day (58.65 Earth days) are in a 3:2 ratio, in a spin–orbit resonance. Consequently, one solar day (sunrise to sunrise) on Mercury lasts for around 176 Earth days: twice the planet's sidereal year. This means that one side of Mercury will remain in sunlight for one Mercurian year of 88 Earth days; while during the next orbit, that side will be in darkness all the time until the next sunrise after another 88 Earth days. Above the planet's surface is an extremely tenuous exosphere and a faint magnetic field just strong enough to deflect solar winds. Combined with its high orbital eccentricity, the planet's surface has widely varying sunlight intensity and temperature, with the equatorial regions ranging from −170 °C (−270 °F) at night to 420 °C (790 °F) during sunlight. Due to its very small axial tilt, the planet's poles are permanently shadowed. This strongly suggests that water ice could be present in the craters.

View the full Wikipedia page for Mercury (planet)
↑ Return to Menu

Moon in the context of Terrestrial planet

A terrestrial planet is a class of planet that is composed primarily of silicate, rocks, or metals. It may instead be known as a tellurian planet, telluric planet, or rocky planet. Within the Solar System, the terrestrial planets accepted by the International Astronomical Union are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets. The large rocky asteroids Pallas and Vesta are sometimes included as well, albeit rarely. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth (Terra and Tellus), as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.

Terrestrial planets have a solid planetary surface, making them substantially different from larger gaseous planets, which are composed mostly of some combination of hydrogen, helium, and water existing in various physical states.

View the full Wikipedia page for Terrestrial planet
↑ Return to Menu

Moon in the context of Geocentrism

Geocentrism is a superseded astronomical model description of the Universe with Earth at the center. It is also known as the geocentric model, often exemplified specifically by the Ptolemaic system. Under most geocentric models, the Sun, the Moon, stars, and planets all orbit Earth. The geocentric model was the predominant description of the cosmos in many European ancient civilizations, such as those of Aristotle in Classical Greece and Ptolemy in Roman Egypt, as well as during the Islamic Golden Age.

Two observations supported the idea that Earth was the center of the Universe. First, from anywhere on Earth, the Sun appears to revolve around Earth once per day. While the Moon and the planets have their own motions, they also appear to revolve around Earth about once per day. The stars appeared to be fixed on a celestial sphere rotating once each day about an axis through the geographical poles of Earth. Second, Earth seems to be unmoving from the perspective of an earthbound observer; it feels solid, stable, and stationary.

View the full Wikipedia page for Geocentrism
↑ Return to Menu

Moon in the context of Ceres (dwarf planet)

Ceres (minor-planet designation: 1 Ceres) is a dwarf planet in the main asteroid belt between the orbits of Mars and Jupiter. It was the first known asteroid, discovered on 1 January 1801 by Giuseppe Piazzi at Palermo Astronomical Observatory in Sicily, and announced as a new planet. Ceres was later classified as an asteroid and more recently as a dwarf planet, the only one not beyond the orbit of Neptune and the largest that does not have a moon.

Ceres's diameter is about a quarter that of the Moon. Its small size means that even at its brightest it is too dim to be seen by the naked eye, except under extremely dark skies. Its apparent magnitude ranges from 6.7 to 9.3, peaking at opposition (when it is closest to Earth) once every 15- to 16-month synodic period. As a result, its surface features are barely visible even with the most powerful telescopes, and little was known about it until the robotic NASA spacecraft Dawn approached Ceres for its orbital mission in 2015.

View the full Wikipedia page for Ceres (dwarf planet)
↑ Return to Menu

Moon in the context of Gravitational perturbation

In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. The other forces can include a third (fourth, fifth, etc.) body, resistance, as from an atmosphere, and the off-center attraction of an oblate or otherwise misshapen body.

View the full Wikipedia page for Gravitational perturbation
↑ Return to Menu

Moon in the context of PSR B1257+12

PSR B1257+12, alternatively designated PSR J1300+1240, is a millisecond pulsar, 2,300 light-years (710 parsecs) from the Sun, in the constellation Virgo, rotating at 160.8 times per second (faster than the blade of a blender). It is also named Lich, after a powerful, fictional undead creature.

The pulsar has a planetary system with three known pulsar planets, named "Draugr" (PSR B1257+12 b or PSR B1257+12 A), "Poltergeist" (PSR B1257+12 c, or PSR B1257+12 B), and "Phobetor" (PSR B1257+12 d, or PSR B1257+12 C). They were both the first extrasolar planets to be discovered and the first pulsar planets to be discovered—B and C in 1992 and A in 1994. A is the lowest-mass planet yet discovered by any observational technique, having somewhat less than twice the mass of Earth's moon.

View the full Wikipedia page for PSR B1257+12
↑ Return to Menu

Moon in the context of Moonlight

Moonlight (or Moonshine) is light from the surface of the Moon, consisting mostly of reflected sunlight, and some earthlight.

View the full Wikipedia page for Moonlight
↑ Return to Menu