Mononuclidic element in the context of Stable nuclide


Mononuclidic element in the context of Stable nuclide

Mononuclidic element Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Mononuclidic element in the context of "Stable nuclide"


⭐ Core Definition: Mononuclidic element

A mononuclidic element or monotopic element is one of the 21 chemical elements that is found naturally on Earth essentially as a single nuclide (which may, or may not, be a stable nuclide). This single nuclide will have a characteristic atomic mass. Thus, the element's natural isotopic abundance is dominated by one isotope that is either stable or very long-lived. There are 19 elements in the first category (which are both monoisotopic and mononuclidic), and 2 (bismuth and protactinium) in the second category (mononuclidic but not monoisotopic, since they have zero, not one, stable nuclides). A list of the 21 mononuclidic elements is given at the end of this article.

Of the 26 monoisotopic elements that, by definition, have only one stable isotope, seven are not considered mononuclidic, due to the presence of a significant fraction of a very long-lived (primordial) radioisotope. These elements are vanadium, rubidium, indium, lanthanum, europium, lutetium, and rhenium.

↓ Menu
HINT:

In this Dossier

Mononuclidic element in the context of Cosmogenic nuclide

Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an in situ Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom (see cosmic ray spallation). These nuclides are produced within Earth materials such as rocks or soil, in Earth's atmosphere, and in extraterrestrial items such as meteoroids. By measuring cosmogenic nuclides, scientists are able to gain insight into a range of geological and astronomical processes. There are both radioactive and stable cosmogenic nuclides. Some of these radionuclides are tritium, carbon-14 and phosphorus-32.

Certain light (low atomic number) primordial nuclides (isotopes of lithium, beryllium and boron) are thought to have been created not only during the Big Bang, but also (and perhaps primarily) to have been made after the Big Bang, but before the condensation of the Solar System, by the process of cosmic ray spallation on interstellar gas and dust. This explains their higher abundance in cosmic dust as compared with their abundances on Earth. This also explains the overabundance of the early transition metals just before iron in the periodic table – the cosmic-ray spallation of iron produces scandium through chromium on the one hand and helium through boron on the other. However, the arbitrary defining qualification for cosmogenic nuclides of being formed "in situ in the Solar System" (meaning inside an already aggregated piece of the Solar System) prevents primordial nuclides formed by cosmic ray spallation before the formation of the Solar System from being termed "cosmogenic nuclides"—even though the mechanism for their formation is exactly the same. These same nuclides still arrive on Earth in small amounts in cosmic rays, and are formed in meteoroids, in the atmosphere, on Earth, "cosmogenically". However, beryllium (all of it stable beryllium-9) is present primordially in the Solar System in much larger amounts, having existed prior to the condensation of the Solar System, and thus present in the materials from which the Solar System formed.

View the full Wikipedia page for Cosmogenic nuclide
↑ Return to Menu

Mononuclidic element in the context of Radioiodine

Naturally occurring iodine (53I) consists of one stable isotope, I, and is a mononuclidic element for atomic weight. Radioisotopes of iodine are known from I to I.

The longest-lived of those, I, has a half-life of 16.14 million years, which is too short for it to exist as a primordial nuclide. It is, however, found in nature as a trace isotope and universally distributed, produced naturally by cosmogenic sources in the atmosphere and by natural fission of the actinides. Today, however, most is artificial as fission product; like krypton-85 the contribution of past nuclear testing and of operating reactors are dwarfed by release from nuclear reprocessing.

View the full Wikipedia page for Radioiodine
↑ Return to Menu

Mononuclidic element in the context of Isotopes of beryllium

Beryllium (4Be) has 11 known isotopes and 3 known isomers, but only one of these isotopes (
Be
) is stable and a primordial nuclide. As such, beryllium is considered a monoisotopic element. It is also a mononuclidic element, because its other isotopes have such short half-lives that none are primordial and their abundance is very low. Beryllium is unique as being the only monoisotopic element with an even number of protons (even atomic number) and also has an odd number of neutrons; the 25 other monoisotopic elements all have odd numbers of protons (odd atomic number), and even of neutrons, so the total mass number is still odd.

Of the 10 radioisotopes of beryllium, the most stable are
Be
with a half-life of 1.387 million years and
Be
with a half-life of 53.22 days. All other radioisotopes have half-lives shorter than 15 seconds.

View the full Wikipedia page for Isotopes of beryllium
↑ Return to Menu