Molecular logic gate in the context of Logic gates


Molecular logic gate in the context of Logic gates

Molecular logic gate Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Molecular logic gate in the context of "Logic gates"


⭐ Core Definition: Molecular logic gate

A molecular logic gate is a molecule that performs a logical operation based on at least one physical or chemical inputs and a single output. The field has advanced from simple logic systems based on a single chemical or physical input to molecules capable of combinatorial and sequential operations such as arithmetic operations (i.e. moleculators and memory storage algorithms). Molecular logic gates work with input signals based on chemical processes and with output signals based on spectroscopic phenomena.

Logic gates are the fundamental building blocks of computers, microcontrollers and other electrical circuits that require one or more logical operations. They can be used to construct digital architectures with varying degrees of complexity by a cascade of a few to several million logic gates, and are essentially physical devices that produce a singular binary output after performing logical operations based on Boolean functions on one or more binary inputs. The concept of molecular logic gates, extending the applicability of logic gates to molecules, aims to convert chemical systems into computational units. The field has evolved to realize several practical applications in fields such as molecular electronics, biosensing, DNA computing, nanorobotics, and cell imaging.  

↓ Menu
HINT:

In this Dossier

Molecular logic gate in the context of Molecular machine

Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switches and motors. Naturally occurring or biological molecular machines are responsible for vital living processes such as DNA replication and ATP synthesis. Kinesins and ribosomes are examples of molecular machines, and they often take the form of multi-protein complexes. For the last several decades, scientists have attempted, with varying degrees of success, to miniaturize machines found in the macroscopic world.

The first example of an artificial molecular machine (AMM) was reported in 1994, featuring a rotaxane with a ring and two different possible binding sites. In 2016 the Nobel Prize in Chemistry was awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa for the design and synthesis of molecular machines. A major point is to exploit existing motion in proteins, such as rotation about single bonds or cis-trans isomerization. Different AMMs are produced by introducing various functionalities, such as the introduction of bistability to create switches. A broad range of AMMs has been designed, featuring different properties and applications; some of these include molecular motors, switches, and logic gates. A wide range of applications have been demonstrated for AMMs, including those integrated into polymeric, liquid crystal, and crystalline systems for varied functions (such as materials research, homogenous catalysis and surface chemistry).

View the full Wikipedia page for Molecular machine
↑ Return to Menu

Molecular logic gate in the context of Logic gate

A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see ideal and real op-amps for comparison).

The primary way of building logic gates uses diodes or transistors acting as electronic switches. Today, most logic gates are made from MOSFETs (metal–oxide–semiconductor field-effect transistors). They can also be constructed using vacuum tubes, electromagnetic relays with relay logic, fluidic logic, pneumatic logic, optics, molecules, acoustics, or even mechanical or thermal elements.

View the full Wikipedia page for Logic gate
↑ Return to Menu