Molecular formula in the context of Empirical formula


Molecular formula in the context of Empirical formula

Molecular formula Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Molecular formula in the context of "Empirical formula"


⭐ Core Definition: Molecular formula

A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name since it does not contain any words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than chemical names and structural formulae.

The simplest types of chemical formulae are called empirical formulae, which use letters and numbers indicating the numerical proportions of atoms of each type. Molecular formulae indicate the simple numbers of each type of atom in a molecule, with no information on structure. For example, the empirical formula for glucose is CH2O (twice as many hydrogen atoms as carbon and oxygen), while its molecular formula is C6H12O6 (12 hydrogen atoms, six carbon and oxygen atoms).

↓ Menu
HINT:

In this Dossier

Molecular formula in the context of Chemical composition

A chemical composition specifies the identity, arrangement, and ratio of the chemical elements making up a compound by way of chemical and atomic bonds.

Chemical formulas can be used to describe the relative amounts of elements present in a compound. For example, the chemical formula for water is H2O: this means that each molecule of water is constituted by 2 atoms of hydrogen (H) and 1 atom of oxygen (O). The chemical composition of water may be interpreted as a 2:1 ratio of hydrogen atoms to oxygen atoms. Different types of chemical formulas are used to convey composition information, such as an empirical or molecular formula.

View the full Wikipedia page for Chemical composition
↑ Return to Menu

Molecular formula in the context of Potassium peroxide

Potassium peroxide is an inorganic compound with the molecular formula K2O2. It is formed as potassium reacts with oxygen in the air, along with potassium oxide (K2O) and potassium superoxide (KO2).

Potassium peroxide reacts with water to form potassium hydroxide and oxygen:

View the full Wikipedia page for Potassium peroxide
↑ Return to Menu

Molecular formula in the context of Sucrose

Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C
12
H
22
O
11
.

For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet.

View the full Wikipedia page for Sucrose
↑ Return to Menu

Molecular formula in the context of Sulfuric acid

Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, and hydrogen, with the molecular formula H2SO4. It is a colorless, odorless, and viscous liquid that is miscible with water.

Pure sulfuric acid does not occur naturally due to its strong affinity to water vapor; it is hygroscopic and readily absorbs water vapor from the air. Concentrated sulfuric acid is a strong oxidant with powerful dehydrating properties, making it highly corrosive towards other materials, from rocks to metals. Phosphorus pentoxide is a notable exception in that it is not dehydrated by sulfuric acid but, to the contrary, dehydrates sulfuric acid to sulfur trioxide. Upon addition of sulfuric acid to water, a considerable amount of heat is released; thus, the reverse procedure of adding water to the acid is generally avoided since the heat released may boil the solution, spraying droplets of hot acid during the process. Upon contact with body tissue, sulfuric acid can cause severe acidic chemical burns and secondary thermal burns due to dehydration. Dilute sulfuric acid is substantially less hazardous without the oxidative and dehydrating properties; though, it is handled with care for its acidity.

View the full Wikipedia page for Sulfuric acid
↑ Return to Menu

Molecular formula in the context of Lactose

Lactose is a disaccharide composed of galactose and glucose and has the molecular formula C12H22O11. Lactose makes up around 2–8% of milk (by mass). The name comes from lac (genlactis), the Latin word for milk, plus the suffix -ose used to name sugars. The compound is a white, water-soluble, non-hygroscopic solid with a mildly sweet taste. It is used in the food industry.

View the full Wikipedia page for Lactose
↑ Return to Menu

Molecular formula in the context of Hexane

Hexane (/ˈhɛksn/) or n-hexane is an organic compound, a straight-chain alkane with six carbon atoms and the molecular formula C6H14.

Hexane is a colorless liquid, odorless when pure, and with a boiling point of approximately 69 °C (156 °F). It is widely used as a cheap, relatively safe, largely unreactive, and easily evaporated non-polar solvent, and modern gasoline blends contain about 3% hexane.

View the full Wikipedia page for Hexane
↑ Return to Menu

Molecular formula in the context of Isomers

In chemistry, isomers are molecules or polyatomic ions with an identical molecular formula – that is, the same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism refers to the existence or possibility of isomers.

Isomers do not necessarily share similar chemical or physical properties. Two main forms of isomerism are structural (or constitutional) isomerism, in which bonds between the atoms differ; and stereoisomerism (or spatial isomerism), in which the bonds are the same but the relative positions of the atoms differ.

View the full Wikipedia page for Isomers
↑ Return to Menu

Molecular formula in the context of Structural formula

The structural formula of a chemical compound is a graphic representation of the molecular structure (determined by structural chemistry methods), showing how the atoms are connected to one another. The chemical bonding within the molecule is also shown, either explicitly or implicitly. Unlike other chemical formula types, which have a limited number of symbols and are capable of only limited descriptive power, structural formulas provide a more complete geometric representation of the molecular structure. For example, many chemical compounds exist in different isomeric forms, which have different enantiomeric structures but the same molecular formula. There are multiple types of ways to draw these structural formulas such as: Lewis structures, condensed formulas, skeletal formulas, Newman projections, Cyclohexane conformations, Haworth projections, and Fischer projections.

Several systematic chemical naming formats, as in chemical databases, are used that are equivalent to, and as powerful as, geometric structures. These chemical nomenclature systems include SMILES, InChI and CML. These systematic chemical names can be converted to structural formulas and vice versa, but chemists nearly always describe a chemical reaction or synthesis using structural formulas rather than chemical names, because the structural formulas allow the chemist to visualize the molecules and the structural changes that occur in them during chemical reactions. ChemSketch and ChemDraw are popular downloads/websites that allow users to draw reactions and structural formulas, typically in the Lewis Structure style.

View the full Wikipedia page for Structural formula
↑ Return to Menu

Molecular formula in the context of Ribose

Ribose is a simple sugar and carbohydrate with molecular formula C5H10O5 and the linear-form composition H−(C=O)−(CHOH)4−H. The naturally occurring form, d-ribose, is a component of the ribonucleotides from which RNA is built, and so this compound is necessary for coding, decoding, regulation and expression of genes. It has a structural analog, deoxyribose, which is a similarly essential component of DNA. l-ribose is an unnatural sugar that was first prepared by Emil Fischer and Oscar Piloty in 1891. It was not until 1909 that Phoebus Levene and Walter Jacobs recognised that d-ribose was a natural product, the enantiomer of Fischer and Piloty's product, and an essential component of nucleic acids. Fischer chose the name "ribose" as it is a partial rearrangement of the name of another sugar, arabinose, of which ribose is an epimer at the 2' carbon; both names also relate to gum arabic, from which arabinose was first isolated and from which they prepared l-ribose.

View the full Wikipedia page for Ribose
↑ Return to Menu

Molecular formula in the context of Acene

In organic chemistry, the acenes or polyacenes are a class of organic compounds and polycyclic aromatic hydrocarbons made up of benzene (C6H6) rings which have been linearly fused. They follow the general molecular formula C4n+2H2n+4.

The larger representatives have potential interest in optoelectronic applications and are actively researched in chemistry and electrical engineering. Pentacene has been incorporated into organic field-effect transistors, reaching charge carrier mobilities as high as 5 cm/Vs.

View the full Wikipedia page for Acene
↑ Return to Menu

Molecular formula in the context of Diazine

In organic chemistry, diazines are a group of organic compounds having the molecular formula C4H4N2. Each contains a benzene ring in which two of the C-H fragments have been replaced by isolobal nitrogen. There are three structural isomers:

View the full Wikipedia page for Diazine
↑ Return to Menu

Molecular formula in the context of Isobutane

Isobutane, also known as i-butane, 2-methylpropane or methylpropane, is a chemical compound with molecular formula HC(CH3)3. It is an isomer of butane. Isobutane is a colorless, odorless gas.It is the simplest alkane with a tertiary carbon atom. Isobutane is used as a precursor molecule in the petrochemical industry, for example in the synthesis of isooctane.

View the full Wikipedia page for Isobutane
↑ Return to Menu

Molecular formula in the context of Stereoisomerism

In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space. This contrasts with structural isomers, which share the same molecular formula, but the bond connections or their order differs. By definition, molecules that are stereoisomers of each other represent the same structural isomer.

View the full Wikipedia page for Stereoisomerism
↑ Return to Menu

Molecular formula in the context of 2,3,3,3-Tetrafluoropropene

2,3,3,3-Tetrafluoropropene, HFO-1234yf, is a hydrofluoroolefin (HFO) with molecular formula CH2=CFCF3. Its primary application is as a refrigerant with low global warming potential (GWP).

As a refrigerant, it is designated R-1234yf and marketed under the names Opteon YF by Chemours and as Solstice yf by Honeywell. R-1234yf is also a component of zeotropic refrigerant blend R-454B.

View the full Wikipedia page for 2,3,3,3-Tetrafluoropropene
↑ Return to Menu

Molecular formula in the context of Chlorine trioxide

Dichlorine hexoxide is the chemical compound with the molecular formula Cl2O6 or O2Cl−O−ClO3, which is correct for its gaseous state. However, in liquid or solid form, this chlorine oxide ionizes into the dark red ionic compound chloryl perchlorate or dioxochloronium(V) perchlorate [ClO2][ClO4], which may be thought of as the mixed anhydride of chloric and perchloric acids. This compound is a notable perchlorating agent.

View the full Wikipedia page for Chlorine trioxide
↑ Return to Menu

Molecular formula in the context of Dicarboxylic acid

In organic chemistry, a dicarboxylic acid is an organic compound containing two carboxyl groups (−COOH). The general molecular formula for dicarboxylic acids can be written as HO2C−R−CO2H, where R can be aliphatic or aromatic. In general, dicarboxylic acids show similar chemical behavior and reactivity to monocarboxylic acids. Dicarboxylic acids are usually colorless solids. A wide variety of dicarboxylic acids are used in industry. Adipic acid, for example, is a precursor to certain kinds of nylon. A wide variety of dicarboxylic acids are found in nature. Aspartic acid and glutamic acid are two amino acids found in all life. Succinic and fumaric acids are essential for metabolism. A large inventory of derivatives are known including many mono- and diesters, amides, etc.

View the full Wikipedia page for Dicarboxylic acid
↑ Return to Menu

Molecular formula in the context of Structural isomers

In chemistry, a structural isomer (or constitutional isomer in the IUPAC nomenclature) of a compound is a compound that contains the same number and type of atoms, but with a different connectivity (i.e. arrangement of bonds) between them. The term metamer was formerly used for the same concept.

For example, butanol H3C−(CH2)3−OH, methyl propyl ether H3C−(CH2)2−O−CH3, and diethyl ether (H3CCH2−)2O have the same molecular formula C4H10O but are three distinct structural isomers.

View the full Wikipedia page for Structural isomers
↑ Return to Menu