Milky Way


Milky Way
In this Dossier

Milky Way in the context of Sagittarius A*

Sagittarius A*, abbreviated as Sgr A* (/ˈsæ ˈ stɑːr/ SADGE-AY-star), is the supermassive black hole at the Galactic Center of the Milky Way. Viewed from Earth, it is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south of the ecliptic, visually close to the Butterfly Cluster (M6) and Lambda Scorpii. Sagittarius A* is a bright and very compact astronomical radio source.

In May 2022, astronomers released the first image of the accretion disk around the event horizon of Sagittarius A*, using the Event Horizon Telescope, a world-wide network of radio observatories. This is the second confirmed image of a black hole, after Messier 87's supermassive black hole in 2019. The black hole itself is not seen; as light is incapable of escaping the immense gravitational force of a black hole, only nearby objects whose behavior is influenced by the black hole can be observed. The observed radio and infrared energy emanates from gas and dust heated to millions of degrees while falling into the black hole.

View the full Wikipedia page for Sagittarius A*
↑ Return to Menu

Milky Way in the context of Sagittarius (constellation)

Sagittarius is one of the constellations of the zodiac and is located in the Southern celestial hemisphere. It is one of the 48 constellations listed by the 2nd-century astronomer Ptolemy and remains one of the 88 modern constellations. Its old astronomical symbol is (♐︎). Its name is Latin for "archer". Sagittarius is commonly represented as a centaur drawing a bow. It lies between Scorpius and Ophiuchus to the west and Capricornus and Microscopium to the east.

The center of the Milky Way lies in the westernmost part of Sagittarius (see Sagittarius A).

View the full Wikipedia page for Sagittarius (constellation)
↑ Return to Menu

Milky Way in the context of Scorpius

Scorpius is a zodiac constellation located in the Southern celestial hemisphere, where it sits near the center of the Milky Way, between Libra to the west and Sagittarius to the east. Scorpius is an ancient constellation whose recognition predates Greek culture; it is one of the 48 constellations identified by the Greek astronomer Ptolemy in the second century.

View the full Wikipedia page for Scorpius
↑ Return to Menu

Milky Way in the context of Galactic bulge

In astronomy, a galactic bulge (or simply bulge) is a tightly packed group of stars within a larger star formation. The term almost exclusively refers to the group of stars found near the center of most spiral galaxies. Bulges were historically thought to be elliptical galaxies that happened to have a disk of stars around them, but high-resolution images using the Hubble Space Telescope have revealed that many bulges lie at the heart of a spiral galaxy. It is now thought that there are at least two types of bulges: bulges that are like ellipticals and bulges that are like spiral galaxies.

View the full Wikipedia page for Galactic bulge
↑ Return to Menu

Milky Way in the context of Stellar designation

In astronomy, stars have a variety of different stellar designations and names, including catalogue designations, current and historical proper names, and foreign language names.

Only a tiny minority of known stars have proper names; all others have only designations from various catalogues or lists, or no identifier at all. Hipparchus in the 2nd century BC enumerated about 850 naked-eye stars. Johann Bayer in 1603 listed about twice this number. Only in the 19th century did star catalogues list the naked-eye stars exhaustively. The Bright Star Catalogue, which is a star catalogue listing all stars of apparent magnitude 6.5 or brighter, or roughly every star visible to the naked eye from Earth, contains 9,096 stars. The most voluminous modern catalogues list on the order of a billion stars, out of an estimated total of 200 to 400 billion in the Milky Way.

View the full Wikipedia page for Stellar designation
↑ Return to Menu

Milky Way in the context of White dwarf

A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: in an Earth-sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place in a white dwarf; what light it radiates is from its residual heat. The nearest known white dwarf is Sirius B, at 8.6 light years, the smaller component of the Sirius binary star. There are currently thought to be eight white dwarfs among the one hundred star systems nearest the Sun. The unusual faintness of white dwarfs was first recognized in 1910. The name white dwarf was coined by Willem Jacob Luyten in 1922.

White dwarfs are thought to be the final evolutionary state of stars whose mass is not high enough to become a neutron star or black hole. This includes over 97% of the stars in the Milky Way. After the hydrogen-fusing period of a main-sequence star of low or intermediate mass ends, such a star will expand to a red giant and fuse helium to carbon and oxygen in its core by the triple-alpha process. If a red giant has insufficient mass to generate the core temperatures required to fuse carbon (around 10 K), an inert mass of carbon and oxygen will build up at its center. After such a star sheds its outer layers and forms a planetary nebula, it will leave behind a core, which is the remnant white dwarf. Usually, white dwarfs are composed of carbon and oxygen (CO white dwarf). If the mass of the progenitor is between 7 and 9 solar masses (M), the core temperature will be sufficient to fuse carbon but not neon, in which case an oxygen–neon–magnesium (ONeMg or ONe) white dwarf may form. Stars of very low mass will be unable to fuse helium; hence, a helium white dwarf may be formed by mass loss in an interacting binary star system.

View the full Wikipedia page for White dwarf
↑ Return to Menu

Milky Way in the context of Trifid Nebula

The Trifid Nebula (catalogued as Messier 20 or M20 and as NGC 6514) is an H II region in the north-west of Sagittarius in a star-forming region in the Milky Way's Scutum–Centaurus Arm. It was discovered by Charles Messier on June 5, 1764. Its name means 'three-lobe'. The object is an unusual combination of an open cluster of stars, an emission nebula (the relatively dense, reddish-pink portion), a reflection nebula (the mainly NNE blue portion), and a dark nebula (the apparent 'gaps' in the former that cause the trifurcated appearance, also designated Barnard 85). Viewed through a small telescope, the Trifid Nebula is a bright and peculiar object, and is thus a perennial favorite of amateur astronomers.

The most massive star that has formed in this region is HD 164492A, an O7.5III star with a mass more than 20 times the mass of the Sun.This star is surrounded by a cluster of approximately 3100 young stars.

View the full Wikipedia page for Trifid Nebula
↑ Return to Menu

Milky Way in the context of Eagle Nebula

The Eagle Nebula (catalogued as Messier 16 or M16, and as NGC 6611, and also known as the Star Queen Nebula) is a young open cluster of stars in the constellation Serpens, discovered by Jean-Philippe de Cheseaux in 1745–46. Both the "Eagle" and the "Star Queen" refer to visual impressions of the dark silhouette near the center of the nebula, an area made famous as the "Pillars of Creation" imaged by the Hubble Space Telescope. The nebula contains several active star-forming gas and dust regions, including the aforementioned Pillars of Creation. The Eagle Nebula lies in the Sagittarius Arm of the Milky Way.

View the full Wikipedia page for Eagle Nebula
↑ Return to Menu

Milky Way in the context of Orion Nebula

The Orion Nebula (also known as Messier 42, M42, or NGC 1976) is a diffuse nebula in the Milky Way situated south of Orion's Belt in the constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It is one of the brightest nebulae and is visible to the naked eye in the night sky with an apparent magnitude of 4.0. It is 1,344 ± 20 light-years (412.1 ± 6.1 pc) away and is the closest region of massive star formation to Earth. M42 is estimated to be 25 light-years across (so its apparent size from Earth is approximately 1 degree). It has a mass of about 2,000 times that of the Sun. Older texts frequently refer to the Orion Nebula as the Great Nebula in Orion or the Great Orion Nebula.

The Orion Nebula is one of the most scrutinized and photographed objects in the night sky and is among the most intensely studied celestial features. The nebula has revealed much about the process of how stars and planetary systems are formed from collapsing clouds of gas and dust. Astronomers have directly observed protoplanetary disks and brown dwarfs within the nebula, intense and turbulent motions of the gas, and the photo-ionizing effects of massive nearby stars in the nebula.

View the full Wikipedia page for Orion Nebula
↑ Return to Menu

Milky Way in the context of Galactic tide

A galactic tide is a tidal force experienced by objects subject to the gravitational field of a galaxy such as the Milky Way. Particular areas of interest concerning galactic tides include galactic collisions, the disruption of dwarf or satellite galaxies, and the Milky Way's tidal effect on the Oort cloud of the Solar System.

View the full Wikipedia page for Galactic tide
↑ Return to Menu