Microquasar in the context of "Gamma rays"

Play Trivia Questions online!

or

Skip to study material about Microquasar in the context of "Gamma rays"

Ad spacer

⭐ Core Definition: Microquasar

A microquasar, a smaller version of a quasar, is a compact region surrounding a stellar black hole with a mass several times that of its companion star, observable in sufficient detail, in our own or nearby galaxy. The matter being pulled from the companion star forms an accretion disk around the black hole. This accretion disk may become so hot, due to friction, that it begins to emit X-rays. The disk also projects narrow streams or "jets" of subatomic particles at near-light speed, generating a strong radio wave emission.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Microquasar in the context of Gamma ray

A gamma ray, also known as gamma radiation (symbol γ), is a penetrating form of electromagnetic radiation arising from high-energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×10 Hz) and wavelengths less than 10 picometers (1×10 m), gamma ray photons have the highest photon energy of any form of electromagnetic radiation. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900, he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.

Gamma rays from radioactive decay are in the energy range from a few kiloelectronvolts (keV) to approximately 8 megaelectronvolts (MeV), corresponding to the typical energy levels in nuclei with reasonably long lifetimes. The energy spectrum of gamma rays can be used to identify the decaying radionuclides using gamma spectroscopy. Very-high-energy gamma rays in the 100–1000 teraelectronvolt (TeV) range have been observed from astronomical sources such as the Cygnus X-3 microquasar.

↑ Return to Menu

Microquasar in the context of Superluminal motion

In astronomy, superluminal motion is the apparently faster-than-light motion seen in some radio galaxies, BL Lac objects, quasars, blazars and recently also in some galactic sources called microquasars. Bursts of energy moving out along the relativistic jets emitted from these objects can have a proper motion that appears greater than the speed of light. All of these sources are thought to contain a black hole, responsible for the ejection of mass at high velocities. Light echoes can also produce apparent superluminal motion.

↑ Return to Menu

Microquasar in the context of Cygnus X-3

Cygnus X-3 is a high-mass X-ray binary (HMXB), one of the stronger binary X-ray sources in the sky. It is often considered to be a microquasar, and it is believed to be a compact object in a binary system which is pulling in a stream of gas from an ordinary star companion. It is one of only two known HMXBs containing a Wolf–Rayet star. It is invisible visually, but can be observed at radio, infrared, X-ray, and gamma-ray wavelengths.

↑ Return to Menu