Micropollutant in the context of "Artificial sweeteners"

Play Trivia Questions online!

or

Skip to study material about Micropollutant in the context of "Artificial sweeteners"

Ad spacer

⭐ Core Definition: Micropollutant

Micropollutants are substances that even at very low concentrations have adverse effects on different environmental matrices. They are an inhomogeneous group of anthroprogenic chemical compounds that is discharged by human to the environment. Commonly known micropollutants that might pose possible threats to ecological environments are, to name just a few:

To date, most of the scientists have identified wastewater treatment plants as the main source of micropollutants to aquatic ecosystems and/or adversely affect the extraction of potable water from raw water. Due to in many places drinking water is also extracted from surface waters, or the substances also reach the groundwater via the water, they are also found in raw water and must be laboriously removed by drinking water treatment. In addition, some of the substances are bioaccumulative, which means that they accumulate in animals or plants and thus also in the human food chain.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Micropollutant in the context of Reuse of excreta

Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients (mainly nitrogen, phosphorus and potassium) that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.

There is a large and growing number of treatment options to make excreta safe and manageable for the intended reuse option. Options include urine diversion and dehydration of feces (urine-diverting dry toilets), composting (composting toilets or external composting processes), sewage sludge treatment technologies and a range of fecal sludge treatment processes. They all achieve various degrees of pathogen removal and reduction in water content for easier handling. Pathogens of concern are enteric bacteria, virus, protozoa, and helminth eggs in feces. As the helminth eggs are the pathogens that are the most difficult to destroy with treatment processes, they are commonly used as an indicator organism in reuse schemes. Other health risks and environmental pollution aspects that need to be considered include spreading micropollutants, pharmaceutical residues and nitrate in the environment which could cause groundwater pollution and thus potentially affect drinking water quality.

↑ Return to Menu

Micropollutant in the context of Sewage treatment

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a large number of sewage treatment processes to choose from. These can range from decentralized systems (including on-site treatment systems) to large centralized systems involving a network of pipes and pump stations (called sewerage) which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter (measured as biological oxygen demand) from sewage,  using aerobic or anaerobic biological processes. A quaternary treatment step (sometimes referred to as advanced treatment) can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale in Sweden.

A large number of sewage treatment technologies have been developed, mostly using biological treatment processes. Design engineers and decision makers need to take into account technical and economical criteria of each alternative when choosing a suitable technology. Often, the main criteria for selection are desired effluent quality, expected construction and operating costs, availability of land, energy requirements and sustainability aspects. In developing countries and in rural areas with low population densities, sewage is often treated by various on-site sanitation systems and not conveyed in sewers. These systems include septic tanks connected to drain fields, on-site sewage systems (OSS), and vermifilter systems. On the other hand, advanced and relatively expensive sewage treatment plants may include tertiary treatment with disinfection and possibly even a fourth treatment stage to remove micropollutants.

↑ Return to Menu

Micropollutant in the context of Environmental persistent pharmaceutical pollutant

The term environmental persistent pharmaceutical pollutants (EPPP) was first suggested in the nomination in 2010 of pharmaceuticals and environment as an emerging issue in a Strategic Approach to International Chemicals Management (SAICM) by the International Society of Doctors for the Environment (ISDE). The occurring problems from EPPPs are in parallel explained under environmental impact of pharmaceuticals and personal care products (PPCP). The European Union summarizes pharmaceutical residues with the potential of contamination of water and soil together with other micropollutants under "priority substances".

↑ Return to Menu