Michael E. Brown in the context of Trans-Neptunian object


Michael E. Brown in the context of Trans-Neptunian object

Michael E. Brown Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Michael E. Brown in the context of "Trans-Neptunian object"


⭐ Core Definition: Michael E. Brown

Michael E. "Mike" Brown (born June 5, 1965) is an American astronomer, who has been professor of planetary astronomy at the California Institute of Technology (Caltech) since 2003. His team has discovered many trans-Neptunian objects (TNOs), including the dwarf planet Eris, which was originally thought to be bigger than Pluto, triggering a debate on the definition of a planet.

He has been referred to by himself and by others as the man who "killed Pluto", because he furthered Pluto's being downgraded to a dwarf planet in the aftermath of his discovery of Eris and several other probable trans-Neptunian dwarf planets. He is the author of How I Killed Pluto and Why It Had It Coming, published in 2010. He was awarded the Kavli Prize (shared with Jane Luu and David C. Jewitt) in 2012 "for discovering and characterizing the Kuiper belt and its largest members, work that led to a major advance in the understanding of the history of our planetary system."

↓ Menu
HINT:

In this Dossier

Michael E. Brown in the context of 65489 Ceto

65489 Ceto, as a binary also (65489) Ceto–Phorcys (provisional designation 2003 FX128), is a binary trans-Neptunian object (TNO) discovered on March 22, 2003, by Chad A. Trujillo and Michael Brown at Palomar. It is named after the sea goddess Ceto from Greek mythology. It came to perihelion in 1989.

View the full Wikipedia page for 65489 Ceto
↑ Return to Menu

Michael E. Brown in the context of Orcus (dwarf planet)

Orcus (minor-planet designation: 90482 Orcus) is a dwarf planet located in the Kuiper belt, with one large moon, Vanth. It has an estimated diameter of 870 to 960 km (540 to 600 mi), comparable to the Inner Solar System dwarf planet Ceres. The surface of Orcus is relatively bright with albedo reaching 23 percent, neutral in color, and rich in water ice. The ice is predominantly in crystalline form, which may be related to past cryovolcanic activity. Other compounds like methane or ammonia may also be present on its surface. Orcus was discovered by American astronomers Michael Brown, Chad Trujillo, and David Rabinowitz on 17 February 2004.

Orcus is a plutino, a trans-Neptunian object that is locked in a 2:3 orbital resonance with the ice giant Neptune, making two revolutions around the Sun to every three of Neptune's. This is much like Pluto, except that the phase of Orcus's orbit is opposite to Pluto's: Orcus is at aphelion (most recently in 2019) around when Pluto is at perihelion (most recently in 1989) and vice versa. Orcus is the second-largest known plutino, after Pluto itself. The perihelion of Orcus's orbit is around 120° from that of Pluto, while the eccentricities and inclinations are similar. Because of these similarities and contrasts, along with its large moon Vanth that can be compared to Pluto's large moon Charon, Orcus has been dubbed the "anti-Pluto". This was a major consideration in selecting its name, as the deity Orcus was the Roman/Etruscan equivalent of the Roman/Greek Pluto.

View the full Wikipedia page for Orcus (dwarf planet)
↑ Return to Menu

Michael E. Brown in the context of Quaoar

Quaoar (minor-planet designation: 50000 Quaoar) is a ringed dwarf planet in the Kuiper belt, a band of icy planetesimals beyond Neptune. It has a slightly ellipsoidal shape with an average diameter of 1,100 km (680 mi), about half the size of the dwarf planet Pluto. The object was discovered by American astronomers Chad Trujillo and Michael Brown at Palomar Observatory on 4 June 2002. Quaoar has a reddish surface made of crystalline water ice, tholins, and traces of frozen methane.

Quaoar has two thin rings orbiting outside its Roche limit, which defied initial theoretical expectations that rings outside the Roche limit should be unstable. Quaoar has one moon named Weywot and another unnamed moon that has not yet been confirmed. It is believed that Quaoar's elongated shape, gravitational influence of its moons, and extremely cold temperature help keep its rings stable.

View the full Wikipedia page for Quaoar
↑ Return to Menu

Michael E. Brown in the context of Makemake

Makemake (minor-planet designation: 136472 Makemake) is a dwarf planet in the Kuiper belt, a disk of icy bodies beyond the orbit of Neptune. It is the fourth largest trans-Neptunian object and the largest member of the classical Kuiper belt, having a diameter 60% that of Pluto. It was discovered on March 31, 2005 by American astronomers Michael E. ("Mike") Brown, Chad Trujillo, and David Rabinowitz at Palomar Observatory. As one of the largest objects found by this team, the discovery of Makemake contributed to the reclassification of Pluto as a dwarf planet in 2006.

Makemake is similar to Pluto with respect to its surface: it is highly reflective, covered largely by frozen methane, and stained reddish-brown by tholins. Makemake has one known satellite, which has not been named. The orbit of this satellite suggests that Makemake's rotation has a high axial tilt, which implies that it experiences extreme seasons. Makemake shows evidence of geochemical activity and cryovolcanism, which has led scientists to suspect that it might harbor a subsurface ocean of liquid water. Gaseous methane has been found on Makemake, although it is unclear whether it is contained in an atmosphere or comes from temporary outgassing.

View the full Wikipedia page for Makemake
↑ Return to Menu

Michael E. Brown in the context of Gonggong (dwarf planet)

Gonggong (minor-planet designation: 225088 Gonggong) is a dwarf planet and a member of the scattered disc beyond Neptune. It has a highly eccentric and inclined orbit during which it ranges from 33–101 astronomical units (4.9–15.1 billion kilometers; 3.1–9.4 billion miles) from the Sun. As of 2019, its distance from the Sun is 88 AU (13.2×10^ km; 8.2×10^ mi), and it is the sixth-farthest known Solar System object. According to the Deep Ecliptic Survey, Gonggong is in a 3:10 orbital resonance with Neptune, in which it completes three orbits around the Sun for every ten orbits completed by Neptune. Gonggong was discovered in July 2007 by American astronomers Megan Schwamb, Michael Brown, and David Rabinowitz at the Palomar Observatory, and the discovery was announced in January 2009.

At approximately 1,230 km (760 mi) in diameter, Gonggong is similar in size to Pluto's moon Charon, making it the fifth-largest known trans-Neptunian object (apart possibly from Charon). It may be sufficiently massive to be in hydrostatic equilibrium and therefore a dwarf planet. Gonggong's large mass makes retention of a tenuous atmosphere of methane just possible, though such an atmosphere would slowly escape into space. The object is named after Gònggōng, a Chinese water god responsible for chaos, floods and the tilt of the Earth. The name was chosen by its discoverers in 2019, when they hosted an online poll for the general public to help choose a name for the object, and the name Gonggong won.

View the full Wikipedia page for Gonggong (dwarf planet)
↑ Return to Menu

Michael E. Brown in the context of Eris (dwarf planet)

Eris (minor-planet designation: 136199 Eris) is the most massive and second-largest known dwarf planet in the Solar System. It is a trans-Neptunian object (TNO) in the scattered disk and has a high-eccentricity orbit. Eris was discovered in January 2005 by a Palomar Observatory–based team led by Mike Brown and verified later that year. It was named in September 2006 after the Greco–Roman goddess of strife and discord. Eris is the ninth-most massive known object orbiting the Sun and the sixteenth-most massive in the Solar System (counting moons). It is also the largest known object in the Solar System that has not been visited by a spacecraft. Eris has been measured at 2,326 ± 12 kilometres (1,445 ± 7 mi) in diameter; its mass is 0.28% that of the Earth and 27% greater than that of Pluto, although Pluto is slightly larger by volume. Both Eris and Pluto have a surface area that is comparable to that of Russia or South America.

Eris has one large known moon, Dysnomia. In February 2016, Eris's distance from the Sun was 96.3 AU (14.41 billion km; 8.95 billion mi), more than three times that of Neptune or Pluto. With the exception of long-period comets, Eris and Dysnomia were the most distant known natural objects in the Solar System until the discovery of 2018 AG37 and 2018 VG18 in 2018.

View the full Wikipedia page for Eris (dwarf planet)
↑ Return to Menu

Michael E. Brown in the context of Haumea (dwarf planet)

Haumea (minor-planet designation: 136108 Haumea) is a dwarf planet located beyond Neptune's orbit. It was discovered in 2004 by a team headed by Mike Brown of Caltech at the Palomar Observatory, and formally announced in 2005 by a team headed by José Luis Ortiz Moreno at the Sierra Nevada Observatory in Spain, who had discovered it that year in precovery images taken by the team in 2003. From that announcement, it received the provisional designation 2003 EL61.

On 17 September 2008, it was named after Haumea, the Hawaiian goddess of childbirth and fertility, under the expectation by the International Astronomical Union (IAU) that it would prove to be a dwarf planet. Nominal estimates make it the third-largest known trans-Neptunian object, after Eris and Pluto, and approximately the size of Uranus's moon Titania. Precovery images of Haumea have been identified back to 22 March 1955.

View the full Wikipedia page for Haumea (dwarf planet)
↑ Return to Menu

Michael E. Brown in the context of C. A. Trujillo

Chadwick A. Trujillo (born November 22, 1973) is an American astronomer, discoverer of minor planets and the co-discoverer of Eris, the most massive dwarf planet known in the Solar System.

Trujillo works with computer software and has examined the orbits of the numerous trans-Neptunian objects (TNOs), which is the outer area of the Solar System that he specialized in. Trujillo, along with Michael Brown and David Rabinowitz, discovered Eris in 2003. As a result of the discovery of the satellite Dysnomia, Eris was the first TNO known to be more massive than Pluto.

View the full Wikipedia page for C. A. Trujillo
↑ Return to Menu

Michael E. Brown in the context of Vanth (moon)

Vanth (formal designation (90482) Orcus I) is the only known moon of the large trans-Neptunian dwarf planet Orcus. It was discovered by Michael Brown and Terry-Ann Suer using images taken by the Hubble Space Telescope on 13 November 2005. The moon has a diameter of 443 km (275 mi), making it about half the size of Orcus and the third-largest moon of a trans-Neptunian object. Vanth is massive enough that it shifts the barycenter of the Orcus–Vanth system outside of Orcus, forming a binary system in which the two bodies revolve around the barycenter, much like the PlutoCharon system. It is hypothesized that both systems formed similarly, most likely by a giant impact early in the Solar System's history. Compared to Orcus, Vanth has a darker and slightly redder surface that supposedly lacks exposed water ice, resembling primordial Kuiper belt objects.

View the full Wikipedia page for Vanth (moon)
↑ Return to Menu

Michael E. Brown in the context of Hiʻiaka (moon)

Hiʻiaka, formal designation (136108) Haumea I, is the larger, outer moon of the trans-Neptunian dwarf planet Haumea. Discovered by Michael E. Brown and the Keck Observatory adaptive optics team on 26 January 2005, it is named after Hiʻiaka, the patron goddess of the Big Island of Hawaii and one of the daughters of Haumea. The moon follows a slightly elliptical orbit around Haumea every 49.5 days, at a distance of 49,400 km (30,700 mi).

Hiʻiaka is an elongated and irregularly shaped body with a mean diameter of 369 km (229 mi), making it the sixth-largest known moon of a trans-Neptunian object. It has a very low bulk density between 0.46 g/cm and 0.69 g/cm, which indicates it is mostly made of loosely-packed water ice and rock. Telescope observations have shown that Hiʻiaka has a highly reflective surface made of crystalline water ice, much like Haumea itself. Hiʻiaka rotates about its axis every 9.68 hours, and appears to rotate sideways with respect to its orbit around Haumea. Like its smaller sibling moon Namaka, Hiʻiaka is believed to be a fragment of Haumea that was ejected in the aftermath of a giant impact 4.4 billion years ago.

View the full Wikipedia page for Hiʻiaka (moon)
↑ Return to Menu

Michael E. Brown in the context of Namaka (moon)

Namaka (full designation (136108) Haumea II) is the smaller, inner moon of the trans-Neptunian dwarf planet Haumea. Discovered by Michael E. Brown and the Keck Observatory adaptive optics team in the fall of 2005, it is named after Nāmaka, a water spirit and one of the daughters of Haumea in Hawaiian mythology. Namaka follows a highly elliptical orbit that is highly tilted by roughly 13 degrees with respect to Haumea's equator. Namaka is heavily perturbed by both the gravitational influence of Haumea's larger, outer moon Hiʻiaka and the variable gravitational field of Haumea's elongated shape.

With a diameter of around 150 km (93 mi), Namaka is predicted to have an irregular shape and a chaotic rotation. It has a reflective surface made of fresh water ice, similar to that of Haumea and Hiʻiaka. Like Hiʻiaka, Namaka is believed to be a fragment of Haumea that was ejected in the aftermath of a giant impact 4.4 billion years ago.

View the full Wikipedia page for Namaka (moon)
↑ Return to Menu

Michael E. Brown in the context of Weywot

Weywot (formal designation (50000) Quaoar I) is the only known moon of the trans-Neptunian dwarf planet Quaoar. It was discovered by Michael Brown and Terry-Ann Suer using images taken by the Hubble Space Telescope on 14 February 2006. It is named after the Tongva sky god and son of Quaoar. Weywot is about 165 km (103 mi) in diameter and orbits Quaoar every 12.4 days at an average distance of 13,300 km (8,300 mi). Weywot is thought to play a role in maintaining Quaoar's outer ring by gravitationally influencing it in an orbital resonance.

View the full Wikipedia page for Weywot
↑ Return to Menu

Michael E. Brown in the context of Dysnomia (moon)

Dysnomia, formal designation (136199) Eris I, is the only known moon of the dwarf planet Eris and is the second-largest known moon of a dwarf planet, after Pluto I Charon. It was discovered in September 2005 by Mike Brown and the Laser Guide Star Adaptive Optics (LGSAO) team at the W. M. Keck Observatory. It carried the provisional designation of S/2005 (2003 UB313) 1 until it was officially named Dysnomia (from the Ancient Greek word Δυσνομία (Dysnomía) meaning anarchy/lawlessness) in September 2006, after the daughter of the Greek goddess Eris.

With an estimated diameter of 615+60
−50
 km
, Dysnomia spans 24% to 29% of Eris's diameter. It is significantly less massive than Eris, with a density consistent with it being mainly composed of ice. In stark contrast to Eris's highly-reflective icy surface, Dysnomia has a very dark surface that reflects 5% of incoming visible light, resembling typical trans-Neptunian objects around Dysnomia's size. These physical properties indicate Dysnomia likely formed from a large impact on Eris, in a similar manner to other binary dwarf planet systems like Pluto and Orcus, and the Earth–Moon system.

View the full Wikipedia page for Dysnomia (moon)
↑ Return to Menu

Michael E. Brown in the context of 50000 Quaoar

Quaoar (minor-planet designation: 50000 Quaoar) is a ringed dwarf planet in the Kuiper belt, a band of icy planetesimals beyond Neptune. It has a slightly ellipsoidal shape with an average diameter of 1,100 km (680 mi), about half the size of the dwarf planet Pluto. The object was discovered by American astronomers Chad Trujillo and Michael Brown at Palomar Observatory on 4 June 2002. Quaoar has a reddish surface made of crystalline water ice, tholins, and traces of frozen methane.

Quaoar has two thin rings orbiting outside its Roche limit, which defies theoretical expectations that rings outside the Roche limit should be unstable. Quaoar has one moon named Weywot and another unnamed moon that has not yet been confirmed. It is believed that Quaoar's elongated shape, gravitational influence of its moons, and extremely cold temperature help keep its rings stable.

View the full Wikipedia page for 50000 Quaoar
↑ Return to Menu

Michael E. Brown in the context of 120347 Salacia

Salacia (minor-planet designation: 120347 Salacia) is a large trans-Neptunian object (TNO) and possible dwarf planet in the Kuiper belt that is probably between 800 km (500 mi) and 875 km (544 mi) in diameter. It was discovered on 22 September 2004, by American astronomers Henry Roe, Michael Brown and Kristina Barkume at the Palomar Observatory in California, United States. Salacia orbits the Sun at an average distance that is slightly greater than that of Pluto. It was named after the Roman goddess Salacia and has a single known moon, Actaea. Salacia and Actaea form a binary system where both bodies are tidally locked to the other, similar to Pluto and Charon.

View the full Wikipedia page for 120347 Salacia
↑ Return to Menu