Methane clathrate in the context of "Clathrate compound"

Play Trivia Questions online!

or

Skip to study material about Methane clathrate in the context of "Clathrate compound"




⭐ Core Definition: Methane clathrate

Methane clathrate (CH4·5.75H2O) or (4CH4·23H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amount of methane is trapped within a crystal structure of water, forming a solid similar to ice. Originally thought to occur only in the outer regions of the Solar System, where temperatures are low and water ice is common, significant deposits of methane clathrate have been found under sediments on the ocean floors of the Earth (around 1100 m below the sea level). Methane hydrate is formed when hydrogen-bonded water and methane gas come into contact at high pressures and low temperatures in oceans.

Methane clathrates are common constituents of the shallow marine geosphere and they occur in deep sedimentary structures and form outcrops on the ocean floor. Methane hydrates are believed to form by the precipitation or crystallisation of methane migrating from deep along geological faults. Precipitation occurs when the methane comes in contact with water within the sea bed subject to temperature and pressure. In 2008, research on Antarctic Vostok Station and EPICA Dome C ice cores revealed that methane clathrates were also present in deep Antarctic ice cores and record a history of atmospheric methane concentrations, dating to 800,000 years ago. The ice-core methane clathrate record is a primary source of data for global warming research, along with oxygen and carbon dioxide.

↓ Menu

In this Dossier

Methane clathrate in the context of Methane

Methane (US: /ˈmɛθn/ METH-ayn, UK: /ˈmθn/ MEE-thayn) is a chemical compound with the chemical formula CH4 (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it is difficult because it is a gas at standard temperature and pressure. In the Earth's atmosphere methane is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Methane is an organic hydrocarbon, and among the simplest of organic compounds.

Naturally occurring methane is found both below ground and under the seafloor and is formed by both geological and biological processes. The largest reservoir of methane is under the seafloor in the form of methane clathrates. When methane reaches the surface and the atmosphere, it is known as atmospheric methane.

↑ Return to Menu

Methane clathrate in the context of Sedna (dwarf planet)

Sedna (minor-planet designation: 90377 Sedna) is a dwarf planet in the outermost reaches of the Solar System, orbiting the Sun far beyond the orbit of Neptune. It was discovered in 2003, and is roughly 1,000 km in diameter. Spectroscopic analysis has revealed its surface to be a mixture of the solid ices of water, carbon dioxide, and ethane, along with sedimentary deposits of methane-derived, reddish-colored tholins, a chemical makeup similar to the surfaces of other trans-Neptunian objects. Sedna is not expected to have a substantial atmosphere. Within the range of uncertainty, it is tied with Ceres in the asteroid belt as the largest dwarf planet not known to have a moon. Owing to its lack of known moons, Sedna's mass and density remain unknown.

Sedna takes approximately 11,400 years to complete one orbit around the Sun. Its orbit is one of the widest known in the Solar System. Its aphelion is located 937 astronomical units (AU) away, about 19 times farther than that of Pluto. Sedna's orbit is also one of the most elliptical discovered, with an eccentricity of 0.85. As of February 2025, Sedna is 83.2 AU (12.4 billion km) from the Sun, 2.5 times as far away as Neptune.

↑ Return to Menu

Methane clathrate in the context of Nankai Trough

The Nankai Trough (南海トラフ, Nankai Torafu; Southern Sea Trough) is a submarine trough located south of the Nankaidō region of Japan's island of Honshu, extending approximately 900 km (559 mi) offshore. The underlying fault, the Nankai megathrust, is the source of the devastating Nankai megathrust earthquakes, while the trough itself is potentially a major source of hydrocarbon fuel, in the form of methane clathrate.

In plate tectonics, the Nankai Trough marks a subduction zone that is caused by subduction of the Philippine Sea plate beneath Japan, part of the Eurasian plate (Kanda et al., 2004). This plate boundary would be an oceanic trench except for a high flux of sediments that fills the trench. Within the Nankai Trough there is a large amount of deformed trench sediments (Ike, 2004), making one of Earth's best examples of accretionary prism. Furthermore, seismic reflection studies have revealed the presence of basement highs that are interpreted as seamounts that are covered in sediments (Ike, 2004). The northern part of the trough is known as the Suruga Trough, while to the east is the Sagami Trough. The Nankai Trough runs roughly parallel to the Japan Median Tectonic Line.

↑ Return to Menu

Methane clathrate in the context of Clathrate hydrate

Clathrate hydrates, or gas hydrates, clathrates, or hydrates, are crystalline water-based solids physically resembling ice, in which small non-polar molecules (typically gases) or polar molecules with large hydrophobic moieties are trapped inside "cages" of hydrogen-bonded, frozen water molecules. In other words, clathrate hydrates are clathrate compounds in which the host molecule is water and the guest molecule is typically a gas or liquid. Without the support of the trapped molecules, the lattice structure of hydrate clathrates would collapse into conventional ice crystal structure or liquid water. Most low molecular weight gases, including O2, H2, N2, CO2, CH4, H2S, Ar, Kr, Xe, and Cl2 as well as some higher hydrocarbons and freons, will form hydrates at suitable temperatures and pressures. Clathrate hydrates are not officially chemical compounds, as the enclathrated guest molecules are never bonded to the lattice. The formation and decomposition of clathrate hydrates are first order phase transitions, not chemical reactions. Their detailed formation and decomposition mechanisms on a molecular level are still not well understood.Clathrate hydrates were first documented in 1810 by Sir Humphry Davy who found that water was a primary component of what was earlier thought to be solidified chlorine.

Clathrates have been found to occur naturally in large quantities. Around 6.4 trillion (6.4×10) tonnes of methane is trapped in deposits of methane clathrate on the deep ocean floor. Such deposits can be found on the Norwegian continental shelf in the northern headwall flank of the Storegga Slide. Clathrates can also exist as permafrost, as at the Mallik gas hydrate site in the Mackenzie Delta of northwestern Canadian Arctic. These natural gas hydrates are seen as a potentially vast energy resource and several countries have dedicated national programs to develop this energy resource. Clathrate hydrate has also been of great interest as technology enabler for many applications like seawater desalination, gas storage, carbon dioxide capture & storage, cooling medium for data centre and district cooling etc. Hydrocarbon clathrates cause problems for the petroleum industry, because they can form inside gas pipelines, often resulting in obstructions. Deep sea deposition of carbon dioxide clathrate has been proposed as a method to remove this greenhouse gas from the atmosphere and control climate change. Clathrates are suspected to occur in large quantities on some outer planets, moons and trans-Neptunian objects, binding gas at fairly high temperatures.

↑ Return to Menu