Metabolite in the context of "Metabolic flux"

Play Trivia Questions online!

or

Skip to study material about Metabolite in the context of "Metabolic flux"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Metabolite in the context of Soil gas

Soil gases (soil atmosphere) are the gases found in the air space between soil components. The spaces between the solid soil particles, if they do not contain water, are filled with air. The primary soil gases are nitrogen, carbon dioxide and oxygen. Oxygen is critical because it allows for respiration of both plant roots and soil organisms. Other natural soil gases include nitric oxide, nitrous oxide, methane, and ammonia. Some environmental contaminants below ground produce gas which diffuses through the soil such as from landfill wastes, mining activities, and contamination by petroleum hydrocarbons which produce volatile organic compounds. The soil atmosphere is also made of a variety of volatile compounds emitted by soil organisms, as respiratory metabolites, allelopathic compounds or semiochemical signals used in within-species and between-species communication. Soil is a net emitter of greenhouse gases, in particular when and where permafrost is thawing and degassing under the influence of climate warming.

Gases fill soil pores in the soil structure as water drains or is removed from a soil pore by evaporation or root absorption. The network of pores within the soil aerates, or ventilates, the soil. This aeration network becomes blocked when water enters soil pores. Not only are both soil air and soil water very dynamic parts of soil, but both are often inversely related.

↑ Return to Menu

Metabolite in the context of Plant nutrition

Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite. This is in accordance with Justus von Liebig's law of the minimum. The total essential plant nutrients include seventeen different elements: carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil (exceptions include some parasitic or carnivorous plants).

Plants must obtain the following mineral nutrients from their growing medium:

↑ Return to Menu

Metabolite in the context of Anus

In mammals, invertebrates and most fish, the anus (pl.: anuses or ani; from Latin, 'ring' or 'circle') is the external body orifice at the exit end of the digestive tract (bowel), i.e. the opposite end from the mouth. Its function is to facilitate the expulsion of waste that remains after digestion.

Bowel contents that pass through the anus include the gaseous flatus and the semi-solid feces, which (depending on the type of animal) include: indigestible matter such as bones, hair pellets, endozoochorous seeds and digestive rocks; residual food material after the digestible nutrients have been extracted, for example cellulose or lignin; ingested matter which would be toxic if it remained in the digestive tract; excreted metabolites like bilirubin-containing bile; and dead mucosal epithelia or excess gut bacteria and other endosymbionts. Passage of feces through the anus is typically controlled by muscular sphincters, and failure to stop unwanted passages results in fecal incontinence.

↑ Return to Menu

Metabolite in the context of Urinary tract

The urinary system, also known as the urinary tract or renal system, is a part of the excretory system of vertebrates. In humans and placental mammals, it consists of the kidneys, ureters, bladder, and the urethra. The purpose of the urinary system is to eliminate urine from the body, regulate blood volume and blood pressure, control levels of electrolytes and metabolites, and regulate blood pH. The kidneys have an extensive blood supply via the renal arteries which leave the kidneys via the renal vein. Each kidney consists of functional units called nephrons. Following filtration of blood and further processing, the ureters carry urine from the kidneys into the urinary bladder. The urethra carries urine from the bladder through the penis or vulva during urination. The female and male urinary system are very similar, differing only in the length of the urethra.

800–2,000 milliliters (mL) of urine are normally produced every day in a healthy human. This amount varies according to fluid intake and kidney function.

↑ Return to Menu

Metabolite in the context of Alcohol poisoning

Alcohol intoxication, commonly described in higher doses as drunkenness or inebriation, and known in overdose as alcohol poisoning, is the behavior and physical effects caused by recent consumption of alcohol. The technical term intoxication in common speech may suggest that a large amount of alcohol has been consumed, leading to accompanying physical symptoms and deleterious health effects. Mild intoxication is mostly referred to by slang terms such as tipsy or buzzed. In addition to the toxicity of ethanol, the main psychoactive component of alcoholic beverages, other physiological symptoms may arise from the activity of acetaldehyde, a metabolite of alcohol. These effects may not arise until hours after ingestion and may contribute to a condition colloquially known as a hangover.

Symptoms of intoxication at lower doses may include mild sedation and poor coordination. At higher doses, there may be slurred speech, trouble walking, impaired vision, mood swings and vomiting. Extreme doses may result in a respiratory depression, coma, or death. Complications may include seizures, aspiration pneumonia, low blood sugar, and injuries or self-harm such as suicide. Alcohol intoxication can lead to alcohol-related crime, with perpetrators more likely to be intoxicated than victims.

↑ Return to Menu

Metabolite in the context of Respiration (physiology)

In physiology, respiration is a process that facilitates the transport of oxygen from the outside environment to bodily tissues and the removal of carbon dioxide using a respiratory system.

The physiological definition of respiration differs from the biological definition of cellular respiration, which is a metabolic process by which an organism obtains energy (in the form of ATP and NADPH) by oxidizing nutrients and releasing waste products. Although physiologic respiration is necessary to sustain cellular respiration and thus life in animals, the processes are distinct: cellular respiration takes place in individual cells of the organism, while physiologic respiration concerns the diffusion and transport of metabolites between the organism and the external environment.

↑ Return to Menu

Metabolite in the context of Ammonium

Ammonium is a modified form of ammonia that has an extra hydrogen atom. It is a positively charged (cationic) molecular ion with the chemical formula NH+4 or [NH4]. It is formed by the addition of a proton (a hydrogen nucleus) to ammonia (NH3). Ammonium is also a general name for positively charged (protonated) substituted amines and quaternary ammonium cations ([NR4]), where one or more hydrogen atoms are replaced by organic or other groups (indicated by R). Not only is ammonium a source of nitrogen and a key metabolite for many living organisms, but it is an integral part of the global nitrogen cycle. As such, human impact in recent years could have an effect on the biological communities that depend on it.

↑ Return to Menu