Metabolic intermediate in the context of "Metabolic"

Play Trivia Questions online!

or

Skip to study material about Metabolic intermediate in the context of "Metabolic"

Ad spacer

⭐ Core Definition: Metabolic intermediate

Metabolic intermediates are compounds produced during the conversion of substrates (starting molecules) into final products in biochemical reactions within cells.

Although these intermediates are of relatively minor direct importance to cellular function, they can play important roles in the allosteric regulation of enzymes, glycolysis, the citric acid cycle, and amino acid synthesis.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Metabolic intermediate in the context of Metabolic regulation

Metabolism (/məˈtæbəlɪzəm/, from Greek: μεταβολή metabolē, "change") refers to the set of life-sustaining chemical reactions that occur within living organisms. The three main functions of metabolism are the conversion of energy in food into a usable form for cellular processes; the conversion of food to building blocks of macromolecules (biopolymers) such as proteins, lipids, nucleic acids, and some carbohydrates; and the excretion of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow, reproduce, maintain their structures, and respond to their environments. The word metabolism can also refer to all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells. In a broader sense, the set of reactions occurring within the cells is called intermediary (or intermediate) metabolism.

Metabolic reactions may be categorized as catabolic—the breaking down of compounds (for example, of glucose to pyruvate by cellular respiration); or anabolic—the building up (biosynthesis) of compounds (such as proteins, carbohydrates, lipids, and nucleic acids). Usually, catabolism releases energy, and anabolism consumes energy.

↑ Return to Menu

Metabolic intermediate in the context of Metabolic pathway

In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes. In most cases of a metabolic pathway, the product of one enzyme acts as the substrate for the next. However, side products are considered waste and removed from the cell.

Different metabolic pathways function in the position within a eukaryotic cell and the significance of the pathway in the given compartment of the cell. For instance, the electron transport chain and oxidative phosphorylation all take place in the mitochondrial membrane. In contrast, glycolysis, pentose phosphate pathway, and fatty acid biosynthesis all occur in the cytosol of a cell.

↑ Return to Menu

Metabolic intermediate in the context of Pyruvic acid

Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO, is an intermediate in several metabolic pathways throughout the cell.

Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or converted to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation.

↑ Return to Menu

Metabolic intermediate in the context of Progesterone

Progesterone (/prˈɛstərn/ ; P4) is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species. It belongs to a group of steroid hormones called the progestogens and is the major progestogen in the body. Progesterone has a variety of important functions in the body. It is also a crucial metabolic intermediate in the production of other endogenous steroids, including the sex hormones and the corticosteroids, and plays an important role in brain function as a neurosteroid.

↑ Return to Menu

Metabolic intermediate in the context of Succinate

Succinic acid (/səkˈsɪnɪk/) is a dicarboxylic acid with the chemical formula (CH2)2(CO2H)2. In living organisms, succinic acid takes the form of an anion, succinate, which has multiple biological roles as a metabolic intermediate being converted into fumarate by the enzyme succinate dehydrogenase in complex 2 of the electron transport chain which is involved in making ATP, and as a signaling molecule reflecting the cellular metabolic state.

Succinate is generated in mitochondria via the tricarboxylic acid (TCA) cycle. Succinate can exit the mitochondrial matrix and function in the cytoplasm as well as the extracellular space, changing gene expression patterns, modulating epigenetic landscape or demonstrating hormone-like signaling. As such, succinate links cellular metabolism, especially ATP formation, to the regulation of cellular function.

↑ Return to Menu