Messenger RNA in the context of "MicroRNA"

Play Trivia Questions online!

or

Skip to study material about Messenger RNA in the context of "MicroRNA"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Messenger RNA in the context of Protein synthesis

Protein biosynthesis, or protein synthesis, is a core biological process, occurring inside cells, balancing the loss of cellular proteins (via degradation or export) through the production of fresh proteins. Proteins perform a number of critical functions as enzymes, structural proteins or hormones. Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences.

Protein synthesis can be divided broadly into two phases: transcription and translation. During transcription, a section of DNA encoding a protein, known as a gene, is converted into a molecule called messenger RNA (mRNA). This conversion is carried out by enzymes, known as RNA polymerases, in the nucleus of the cell. In eukaryotes, this mRNA is initially produced in a premature form (pre-mRNA) which undergoes post-transcriptional modifications to produce mature mRNA. The mature mRNA is exported from the cell nucleus via nuclear pores to the cytoplasm of the cell for translation to occur. During translation, the mRNA is read by ribosomes which use the nucleotide sequence of the mRNA to determine the sequence of amino acids. The ribosomes catalyze the formation of covalent peptide bonds between the encoded amino acids to form a polypeptide chain.

↑ Return to Menu

Messenger RNA in the context of RNA

Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyribonucleic acid (DNA) are nucleic acids. The nucleic acids constitute one of the four major macromolecules essential for all known forms of life. RNA is assembled as a chain of nucleotides. Cellular organisms use messenger RNA (mRNA) to convey genetic information (using the nitrogenous bases of guanine, uracil, adenine, and cytosine, denoted by the letters G, U, A, and C) that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.

Some RNA molecules play an active role within cells by catalyzing biological reactions, controlling gene expression, or sensing and communicating responses to cellular signals. One of these active processes is protein synthesis, a universal function in which RNA molecules direct the synthesis of proteins on ribosomes. This process uses transfer RNA (tRNA) molecules to deliver amino acids to the ribosome, where ribosomal RNA (rRNA) then links amino acids together to form coded proteins.

↑ Return to Menu

Messenger RNA in the context of Gene product

A gene product is the biochemical material, either RNA or protein, resulting from the expression of a gene. A measurement of the amount of gene product is sometimes used to infer how active a gene is. Abnormal amounts of gene product can be correlated with disease-causing alleles, such as the overactivity of oncogenes, which can cause cancer.A gene is defined as "a hereditary unit of DNA that is required to produce a functional product". Regulatory elements include:

These elements work in combination with the open reading frame to create a functional product. This product may be transcribed and be functional as RNA or is translated from mRNA to a protein to be functional in the cell.

↑ Return to Menu

Messenger RNA in the context of Transcription (biology)

Transcription is the process of duplicating a segment of DNA into RNA for the purpose of gene expression. Some segments of DNA are transcribed into RNA molecules that can encode proteins, called messenger RNA (mRNA). Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs).

Both DNA and RNA are nucleic acids, composed of nucleotide sequences. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary RNA strand called a primary transcript.

↑ Return to Menu

Messenger RNA in the context of Base pair

A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" (or "Watson–Crick–Franklin") base pairs (guaninecytosine and adeninethymine/uracil) allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. The complementary nature of this based-paired structure provides a redundant copy of the genetic information encoded within each strand of DNA. The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and RNA polymerase transcribes DNA into RNA. Many DNA-binding proteins can recognize specific base-pairing patterns that identify particular regulatory regions of genes.

Intramolecular base pairs can occur within single-stranded nucleic acids. This is particularly important in RNA molecules (e.g., transfer RNA), where Watson–Crick base pairs (guanine–cytosine and adenine-uracil) permit the formation of short double-stranded helices, and a wide variety of non–Watson–Crick interactions (e.g., G–U or A–A) allow RNAs to fold into a vast range of specific three-dimensional structures. In addition, base-pairing between transfer RNA (tRNA) and messenger RNA (mRNA) forms the basis for the molecular recognition events that result in the nucleotide sequence of mRNA becoming translated into the amino acid sequence of proteins via the genetic code.

↑ Return to Menu

Messenger RNA in the context of Translation (biology)

Translation is the process in biological cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in the addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression.

In translation, messenger RNA (mRNA) is decoded in a ribosome, outside the nucleus, to produce a specific amino acid chain, or polypeptide. The polypeptide later folds into an active protein and performs its functions in the cell. The polypeptide can also start folding during protein synthesis. The ribosome facilitates decoding by inducing the binding of complementary transfer RNA (tRNA) anticodon sequences to mRNA codons. The tRNAs carry specific amino acids that are chained together into a polypeptide as the mRNA passes through and is "read" by the ribosome.

↑ Return to Menu

Messenger RNA in the context of Baltimore classification

Baltimore classification is a system used to classify viruses by their routes of transferring genetic information from the genome to messenger RNA (mRNA). Seven Baltimore groups, or classes, exist and are numbered in Roman numerals from I to VII. Groups are defined by whether the viral genome is made of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), whether the genome is single- or double-stranded, whether a single-stranded RNA genome is positive-sense (+) or negative-sense (–), and whether the virus makes DNA from RNA (reverse transcription (RT)). Viruses within Baltimore groups typically have the same replication method, but other characteristics such as virion structure are not directly related to Baltimore classification.

The seven Baltimore groups are for double-stranded DNA (dsDNA) viruses, single-stranded DNA (ssDNA) viruses, double-stranded RNA (dsRNA) viruses, positive-sense single-stranded RNA (+ssRNA) viruses, negative-sense single-stranded RNA (–ssRNA) viruses, ssRNA viruses that have a DNA intermediate in their life cycle (ssRNA-RT), and dsDNA viruses that have an RNA intermediate in their life cycle (dsDNA-RT). Only one class exists for ssDNA viruses because their genomes are converted to dsDNA before transcription regardless of sense. Some viruses belong to more than one Baltimore group, such as DNA viruses that have either dsDNA or ssDNA as their genome.

↑ Return to Menu