Mendeleev's predicted elements in the context of "Technetium"

Play Trivia Questions online!

or

Skip to study material about Mendeleev's predicted elements in the context of "Technetium"

Ad spacer

⭐ Core Definition: Mendeleev's predicted elements

Dmitri Mendeleev published a periodic table of the chemical elements in 1869 based on properties that appeared with some regularity as he laid out the elements from lightest to heaviest. When Mendeleev proposed his periodic table, he noted gaps in the table and predicted that then-unknown elements existed with properties appropriate to fill those gaps. He named them eka-boron, eka-aluminium, eka-silicon, and eka-manganese, with respective atomic masses of 44, 68, 72, and 100.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Mendeleev's predicted elements in the context of Technetium

Technetium is a chemical element; it has symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense of atomic number are both stable. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous fission product in uranium ore and thorium ore (the most common source), or the product of neutron capture in molybdenum ores. This silvery gray, crystalline transition metal lies between manganese and rhenium in group 7 of the periodic table, and its chemical properties are intermediate between those of both adjacent elements. The most common naturally occurring isotope is Tc, in traces only.

Many of technetium's properties had been predicted by Dmitri Mendeleev before it was discovered; Mendeleev noted a gap in his periodic table and gave the undiscovered element the provisional name ekamanganese (Em). In 1937, technetium became the first predominantly artificial element to be produced, hence its name (from the Greek technetos, 'artificial', + -ium).

↓ Explore More Topics
In this Dossier

Mendeleev's predicted elements in the context of Germanium

Germanium is a chemical element; it has symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically similar to silicon. Like silicon, germanium naturally reacts and forms complexes with oxygen in nature.

Because it seldom appears in high concentration, germanium was found comparatively late in the discovery of the elements. Germanium ranks 50th in abundance of the elements in the Earth's crust. In 1869, Dmitri Mendeleev predicted its existence and some of its properties from its position on his periodic table, and called the element ekasilicon. On February 6, 1886, Clemens Winkler at Freiberg University found the new element, along with silver and sulfur, in the mineral argyrodite. Winkler named the element after Germany, his country of birth. Germanium is mined primarily from sphalerite (the primary ore of zinc), though germanium is also recovered commercially from silver, lead, and copper ores.

↑ Return to Menu

Mendeleev's predicted elements in the context of Hafnium

Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1922 by Dirk Coster and George de Hevesy. Hafnium is named after Hafnia, the Latin name for Copenhagen, where it was discovered. The element is obtained only by separation from zirconium, with most of the world's hafnium production coming from processes that also produce zirconium. These processes make use of heavy mineral sands ore deposits, which include the minerals zircon, rutile, and ilmenite, among others.

Hafnium is most often used in alloys with nickel, and was used in larger quantities to produce the control rods used in nuclear reactors. Hafnium's large neutron capture cross section makes it a good material for neutron absorption in control rods in nuclear power plants, but at the same time requires that it be removed from the neutron-transparent corrosion-resistant zirconium alloys used in nuclear reactors. It is ductile, and is also used in filaments and electrodes. Some semiconductor fabrication processes use its oxide for integrated circuits at 45 nanometres (1.8×10 in) and smaller, and superalloys used for special applications can contain hafnium in combination with niobium, titanium, or tungsten.

↑ Return to Menu