Membrane lipid in the context of Glycolipid


Membrane lipid in the context of Glycolipid

⭐ Core Definition: Membrane lipid

Membrane lipids are a group of compounds (structurally similar to fats and oils) which form the lipid bilayer of the cell membrane. The three major classes of membrane lipids are phospholipids, glycolipids, and cholesterol. Lipids are amphiphilic: they have one end that is soluble in water ('polar') and an ending that is soluble in fat ('nonpolar'). By forming a double layer with the polar ends pointing outwards and the nonpolar ends pointing inwards membrane lipids can form a 'lipid bilayer' which keeps the watery interior of the cell separate from the watery exterior. The arrangements of lipids and various proteins, acting as receptors and channel pores in the membrane, control the entry and exit of other molecules and ions as part of the cell's metabolism. In order to perform physiological functions, membrane proteins are facilitated to rotate and diffuse laterally in two dimensional expanse of lipid bilayer by the presence of a shell of lipids closely attached to protein surface, called annular lipid shell.

↓ Menu
HINT:

In this Dossier

Membrane lipid in the context of Poikilotherm

A poikilotherm (/ˈpɔɪkələˌθɜːrm, pɔɪˈkɪləˌθɜːrm/) is an animal (Greek poikilos – 'various', 'spotted', and therme – 'heat') whose internal temperature varies considerably. Poikilotherms have to survive and adapt to environmental stress. One of the most important stressors is outer environment temperature change, which can lead to alterations in membrane lipid order and can cause protein unfolding and denaturation at elevated temperatures. Poikilotherm is the opposite of homeotherm – an animal which maintains thermal homeostasis. In principle, the term could be applied to any organism, but it is generally only applied to vertebrate animals. Usually the fluctuations are a consequence of variation in the ambient environmental temperature. Many terrestrial ectotherms are poikilothermic. However some ectotherms seek constant-temperature environments to the point that they are able to maintain a constant internal temperature, and are considered actual or practical homeotherms. It is this distinction that often makes the term poikilotherm more useful than the vernacular "cold-blooded", which is sometimes used to refer to ectotherms more generally.

Poikilothermic animals include types of vertebrate animals, specifically some fish, amphibians, and reptiles, as well as many invertebrate animals. The naked mole-rat and sloths are some of the rare mammals which are poikilothermic.

View the full Wikipedia page for Poikilotherm
↑ Return to Menu

Membrane lipid in the context of Phototroph

Phototrophs (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light' and τροφή (trophḗ) 'nourishment') are organisms that carry out photon capture to acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic. Many, but not all, phototrophs photosynthesize: they anabolically convert carbon dioxide into biomolecules to be utilized structurally (e.g. cellulose and membrane lipids), functionally (e.g. vitamins, nucleotides, and amino acids), or as a source for later catabolic processes (e.g. starches, sugars and fats). All phototrophs either use electron transport chains or direct proton pumping to establish an electrochemical gradient, which is utilized by ATP synthase to provide adenosine triphosphate (ATP) for the cell. Phototrophs can be either autotrophs or heterotrophs. If their electron and hydrogen donors are inorganic compounds (e.g., Na
2
S
2
O
3
, as in some purple sulfur bacteria, or H
2
S
, as in some green sulfur bacteria) they can be also called lithotrophs, and so, some photoautotrophs are also called photolithoautotrophs. Examples of phototroph organisms are Rhodobacter capsulatus, Chromatium, and Chlorobium.

View the full Wikipedia page for Phototroph
↑ Return to Menu