Measurement in quantum mechanics in the context of Pure state


Measurement in quantum mechanics in the context of Pure state

Measurement in quantum mechanics Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Measurement in quantum mechanics in the context of "Pure state"


⭐ Core Definition: Measurement in quantum mechanics

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic.

The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about local hidden variables within quantum systems.

↓ Menu
HINT:

In this Dossier

Measurement in quantum mechanics in the context of Quantum state

In quantum physics, a quantum state is a mathematical entity that represents a physical system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. Knowledge of the quantum state, and the rules for the system's evolution in time, exhausts all that can be known about a quantum system.

Quantum states are either pure or mixed, and have several possible representations. Pure quantum states are commonly represented as a vector in a Hilbert space. Mixed states are statistical mixtures of pure states and cannot be represented as vectors on that Hilbert space, and instead are commonly represented as density matrices.

View the full Wikipedia page for Quantum state
↑ Return to Menu

Measurement in quantum mechanics in the context of Born rule

The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a given position is proportional to the square of the amplitude of the system's wavefunction at that position. It was formulated and published by German physicist Max Born in July 1926.

View the full Wikipedia page for Born rule
↑ Return to Menu

Measurement in quantum mechanics in the context of Complementarity (physics)

In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that certain pairs of complementary properties cannot all be observed or measured simultaneously. For example, position and momentum, frequency and lifetime, or optical phase and photon number. In contemporary terms, complementarity encompasses both the uncertainty principle and wave-particle duality.

Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the behavior of atomic and subatomic objects cannot be separated from the measuring instruments that create the context in which the measured objects behave. Consequently, there is no "single picture" that unifies the results obtained in these different experimental contexts, and only the "totality of the phenomena" together can provide a completely informative description.

View the full Wikipedia page for Complementarity (physics)
↑ Return to Menu

Measurement in quantum mechanics in the context of Interpretations of quantum mechanics

An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments. However, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is deterministic or stochastic, local or non-local, which elements of quantum mechanics can be considered real, and what the nature of measurement is, among other matters.

While some variation of the Copenhagen interpretation is commonly presented in textbooks, many other interpretations have been developed.Despite a century of debate and experiment, no consensus has been reached among physicists and philosophers of physics concerning which interpretation best "represents" reality.

View the full Wikipedia page for Interpretations of quantum mechanics
↑ Return to Menu

Measurement in quantum mechanics in the context of Quantum computing

A quantum computer is a (real or theoretical) computer that exploits superposed and entangled states. Quantum computers can be viewed as sampling from quantum systems that evolve in ways that may be described as operating on an enormous number of possibilities simultaneously, though still subject to strict computational constraints. By contrast, ordinary ("classical") computers operate according to deterministic rules. (A classical computer can, in principle, be replicated by a classical mechanical device, with only a simple multiple of time cost. On the other hand (it is believed), a quantum computer would require exponentially more time and energy to be simulated classically.) It is widely believed that a quantum computer could perform some calculations exponentially faster than any classical computer. For example, a large-scale quantum computer could break some widely used public-key cryptographic schemes and aid physicists in performing physical simulations. However, current hardware implementations of quantum computation are largely experimental and only suitable for specialized tasks.

The basic unit of information in quantum computing, the qubit (or "quantum bit"), serves the same function as the bit in ordinary or "classical" computing. However, unlike a classical bit, which can be in one of two states (a binary), a qubit can exist in a linear combination of two states known as a quantum superposition. The result of measuring a qubit is one of the two states given by a probabilistic rule. If a quantum computer manipulates the qubit in a particular way, wave interference effects amplify the probability of the desired measurement result. The design of quantum algorithms involves creating procedures that allow a quantum computer to perform this amplification.

View the full Wikipedia page for Quantum computing
↑ Return to Menu

Measurement in quantum mechanics in the context of Hasok Chang

Hasok Chang (Korean장하석; born March 26, 1967) is a South Korea-born American historian and philosopher of science currently serving as the Hans Rausing Professor at the Department of History and Philosophy of Science at the University of Cambridge and a board member of the Philosophy of Science Association. He previously served as president of the British Society for the History of Science from 2012 to 2014.

His areas of interest include the history and philosophy of chemistry and physics, the philosophy of scientific practice, measurement in quantum mechanics, realism, scientific evidence, pluralism and pragmatism.

View the full Wikipedia page for Hasok Chang
↑ Return to Menu

Measurement in quantum mechanics in the context of Density matrix

In quantum mechanics, a density matrix (or density operator) is a matrix used in calculating the probabilities of the outcomes of measurements performed on physical systems. It is a generalization of the state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles of states. These arise in quantum mechanics in two different situations:

  1. when the preparation of a system can randomly produce different pure states, and thus one must deal with the statistics of the ensemble of possible preparations; and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state. This case is typical for a system interacting with some environment (e.g. decoherence). In this case, the density matrix of an entangled system differs from that of an ensemble of pure states that, combined, would give the same statistical results upon measurement.

Density matrices are thus crucial tools in areas of quantum mechanics that deal with mixed states (not to be confused with superposed states), such as quantum statistical mechanics, open quantum systems and quantum information.

View the full Wikipedia page for Density matrix
↑ Return to Menu

Measurement in quantum mechanics in the context of Wave function collapse

In various interpretations of quantum mechanics, wave function collapse, also called reduction of the state vector, occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation.

In the Copenhagen interpretation, wave function collapse connects quantum to classical models, with a special role for the observer. By contrast, objective-collapse proposes an origin in physical processes. In the many-worlds interpretation, collapse does not exist; all wave function outcomes occur while quantum decoherence accounts for the appearance of collapse.

View the full Wikipedia page for Wave function collapse
↑ Return to Menu

Measurement in quantum mechanics in the context of Counterfactual definiteness

In quantum mechanics, counterfactual definiteness (CFD) is the ability to speak "meaningfully" of the definiteness of the results of measurements that have not been performed (i.e., the ability to assume the existence of objects, and properties of objects, even when they have not been measured). The term "counterfactual definiteness" is used in discussions of physics calculations, especially those related to the phenomenon called quantum entanglement and those related to the Bell inequalities. In such discussions "meaningfully" means the ability to treat these unmeasured results on an equal footing with measured results in statistical calculations. It is this (sometimes assumed but unstated) aspect of counterfactual definiteness that is of direct relevance to physics and mathematical models of physical systems and not philosophical concerns regarding the meaning of unmeasured results.

View the full Wikipedia page for Counterfactual definiteness
↑ Return to Menu

Measurement in quantum mechanics in the context of Good quantum number

In quantum mechanics, the eigenvalue of an observable is said to be a good quantum number if the observable is a constant of motion. In other words, the quantum number is good if the corresponding observable commutes with the Hamiltonian. If the system starts from the eigenstate with an eigenvalue , it remains on that state as the system evolves in time, and the measurement of always yields the same eigenvalue .

Good quantum numbers are often used to label initial and final states in experiments. For example, in particle colliders:

View the full Wikipedia page for Good quantum number
↑ Return to Menu

Measurement in quantum mechanics in the context of POVM

In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs (called projective measurements).

In rough analogy, a POVM is to a PVM what a mixed state is to a pure state. Mixed states are needed to specify the state of a subsystem of a larger system (see purification of quantum state); analogously, POVMs are necessary to describe the effect on a subsystem of a projective measurement performed on a larger system.

View the full Wikipedia page for POVM
↑ Return to Menu