Mass in the context of "Rest energy"

Play Trivia Questions online!

or

Skip to study material about Mass in the context of "Rest energy"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Mass in the context of Matter

In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles. In everyday as well as scientific usage, matter generally includes atoms and anything made up of them, and any particles (or combination of particles) that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat. Matter exists in various states (also known as phases). These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.

Usually atoms can be imagined as a nucleus of protons and neutrons, and a surrounding "cloud" of orbiting electrons which "take up space". However, this is only somewhat correct because subatomic particles and their properties are governed by their quantum nature, which means they do not act as everyday objects appear to act – they can act like waves as well as particles, and they do not have well-defined sizes or positions. In the Standard Model of particle physics, matter is not a fundamental concept because the elementary constituents of atoms are quantum entities which do not have an inherent "size" or "volume" in any everyday sense of the word. Due to the exclusion principle and other fundamental interactions, some "point particles" known as fermions (quarks, leptons), and many composites and atoms, are effectively forced to keep a distance from other particles under everyday conditions; this creates the property of matter which appears to us as matter taking up space.

↑ Return to Menu

Mass in the context of Coriolis effect

In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise (or counterclockwise) rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

Newton's laws of motion describe the motion of an object in an inertial (non-accelerating) frame of reference. When Newton's laws are transformed to a rotating frame of reference, the Coriolis and centrifugal accelerations appear. When applied to objects with masses, the respective forces are proportional to their masses. The magnitude of the Coriolis force is proportional to the rotation rate, and the magnitude of the centrifugal force is proportional to the square of the rotation rate. The Coriolis force acts in a direction perpendicular to two quantities: the angular velocity of the rotating frame relative to the inertial frame and the velocity of the body relative to the rotating frame, and its magnitude is proportional to the object's speed in the rotating frame (more precisely, to the component of its velocity that is perpendicular to the axis of rotation). The centrifugal force acts outwards in the radial direction and is proportional to the distance of the body from the axis of the rotating frame. These additional forces are termed inertial forces, fictitious forces, or pseudo forces. By introducing these fictitious forces to a rotating frame of reference, Newton's laws of motion can be applied to the rotating system as though it were an inertial system; these forces are correction factors that are not required in a non-rotating system.

↑ Return to Menu

Mass in the context of Naturalism (philosophy)

In philosophy, naturalism is the idea that only natural laws and forces (as opposed to supernatural ones) operate in the universe. In its primary sense, it is also known as ontological naturalism, metaphysical naturalism, pure naturalism, philosophical naturalism and antisupernaturalism. "Ontological" refers to ontology, the philosophical study of what exists. Philosophers often treat naturalism as equivalent to physicalism or materialism, but there are important distinctions between the philosophies.

For example, philosopher Paul Kurtz argued that nature is best accounted for by reference to material principles. These principles include mass, energy, and other physical and chemical properties accepted by the scientific community. Further, this sense of naturalism holds that spirits, deities, and ghosts are not real and that there is no "purpose" in nature as in dysteleology. This stronger formulation of naturalism is commonly referred to as metaphysical naturalism. On the other hand, the more moderate view that naturalism should be assumed in one's working methods as the current paradigm, without any further consideration of whether naturalism is true in the robust metaphysical sense, is called methodological naturalism.

↑ Return to Menu

Mass in the context of Center of mass

In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weighted relative position of the distributed mass sums to zero. For a rigid body containing its center of mass, this is the point to which a force may be applied to cause a linear acceleration without an angular acceleration. Calculations in mechanics are often simplified when formulated with respect to the center of mass. It is a hypothetical point where the entire mass of an object may be assumed to be concentrated to visualise its motion. In other words, the center of mass is the particle equivalent of a given object for the application of Newton's laws of motion.

In the case of a single rigid body, the center of mass is fixed in relation to the body, and if the body has uniform density, it will be located at the centroid. The center of mass may be located outside the physical body, as is sometimes the case for hollow or open-shaped objects, such as a horseshoe. In the case of a distribution of separate bodies, such as the planets of the Solar System, the center of mass may not correspond to the position of any individual member of the system.

↑ Return to Menu

Mass in the context of Troy ounce

Troy weight is a system of units of mass whose origin is uncertain. By far the most common troy unit is the troy ounce (oz t), the standard mass unit for precious metals in industry and in trade; it equals 31.1034768 grams. The troy weight units are the grain, the pennyweight (24 grains), the troy ounce (20 pennyweights), and the troy pound (12 troy ounces). The troy grain is equal to the grain unit of the avoirdupois and apothecaries' systems, but the troy ounce is heavier than the avoirdupois ounce, and the troy pound is lighter than the avoirdupois pound.

↑ Return to Menu

Mass in the context of Energy density

There are different types of energy stored, corresponding to a particular type of reaction. In order of the typical magnitude of the energy stored, examples of reactions are: nuclear, chemical (including electrochemical), electrical, pressure, material deformation or in electromagnetic fields. Nuclear reactions take place in stars and nuclear power plants, both of which derive energy from the binding energy of nuclei. Chemical reactions are used by organisms to derive energy from food and by automobiles from the combustion of gasoline. Liquid hydrocarbons (fuels such as gasoline, diesel and kerosene) are today the densest way known to economically store and transport chemical energy at a large scale (1 kg of diesel fuel burns with the oxygen contained in ≈ 15 kg of air). Burning local biomass fuels supplies household energy needs (cooking fires, oil lamps, etc.) worldwide. Electrochemical reactions are used by devices such as laptop computers and mobile phones to release energy from batteries.

↑ Return to Menu

Mass in the context of Density

Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ρ (the lower case Greek letter rho), although the Latin letter D (or d) can also be used: where ρ is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight.

For a pure substance, the density is equal to its mass concentration.Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium is the densest known element at standard conditions for temperature and pressure.

↑ Return to Menu

Mass in the context of Stellar remnant

In astronomy, the term compact object (or compact star) refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density compared to ordinary atomic matter. The term is used as a generalization for cases where the exact nature of a significant gravitational effect isolated to a small radius is not known.

Since most compact object types represent endpoints of stellar evolution, they are also called stellar remnants, and accordingly may be called dead stars in popular media reports. The state and type of a stellar remnant depends primarily on the mass of its progenitor star. A compact object that is not a black hole may be called a degenerate star.

↑ Return to Menu

Mass in the context of Interstellar medium

The interstellar medium (ISM) is the matter and radiation that exists in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic medium. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field. Although the density of atoms in the ISM is usually far below that in the best laboratory vacuums, the mean free path between collisions is short compared to typical interstellar lengths, so on these scales the ISM behaves as a gas (more precisely, as a plasma: it is everywhere at least slightly ionized), responding to electromagnetic radiation, and not as a collection of non-interacting particles.

The interstellar medium is composed of multiple phases distinguished by whether matter is ionic, atomic, or molecular, and the temperature and density of the matter. The interstellar medium is composed primarily of hydrogen, followed by helium with trace amounts of carbon, oxygen, and nitrogen. The thermal pressures of these phases are in rough equilibrium with one another. Magnetic fields and turbulent motions also provide pressure in the ISM, and are typically more important, dynamically, than the thermal pressure. In the interstellar medium, matter is primarily in molecular form and reaches number densities of 10 molecules per m (1 trillion molecules per m). In hot, diffuse regions, gas is highly ionized, and the density may be as low as 100 ions per m. Compare this with a number density of roughly 10 molecules per m for air at sea level, and 10 molecules per m (10 quadrillion molecules per m) for a laboratory high-vacuum chamber. Within our galaxy, by mass, 99% of the ISM is gas in any form, and 1% is dust. Of the gas in the ISM, by number 91% of atoms are hydrogen and 8.9% are helium, with 0.1% being atoms of elements heavier than hydrogen or helium, known as "metals" in astronomical parlance. By mass this amounts to 70% hydrogen, 28% helium, and 1.5% heavier elements. The hydrogen and helium are primarily a result of primordial nucleosynthesis, while the heavier elements in the ISM are mostly a result of enrichment (due to stellar nucleosynthesis) in the process of stellar evolution.

↑ Return to Menu