Map (mathematics) in the context of Data mapping


Map (mathematics) in the context of Data mapping

Map (mathematics) Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Map (mathematics) in the context of "Data mapping"


⭐ Core Definition: Map (mathematics)

In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper.

The term map may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In category theory, a map may refer to a morphism. The term transformation can be used interchangeably, but transformation often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory.

↓ Menu
HINT:

In this Dossier

Map (mathematics) in the context of Affine transformation

In Euclidean geometry, an affine transformation or affinity (from the Latin, affinis, "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line.

View the full Wikipedia page for Affine transformation
↑ Return to Menu

Map (mathematics) in the context of Vertex-transitive

In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

Technically, one says that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope acts transitively on its vertices, or that the vertices lie within a single symmetry orbit.

View the full Wikipedia page for Vertex-transitive
↑ Return to Menu

Map (mathematics) in the context of Transformation (function)

In mathematics, a transformation, transform, or self-map is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: XX.Examples include linear transformations of vector spaces and geometric transformations, which include projective transformations, affine transformations, and specific affine transformations, such as rotations, reflections and translations.

View the full Wikipedia page for Transformation (function)
↑ Return to Menu

Map (mathematics) in the context of Isomorphic

In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them, and this is often denoted as . The word is derived from Ancient Greek ἴσος (isos) 'equal' and μορφή (morphe) 'form, shape'.

The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified.

View the full Wikipedia page for Isomorphic
↑ Return to Menu

Map (mathematics) in the context of Rotation (mathematics)

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

Mathematically, a rotation is a map. All rotations about a fixed point form a group under composition called the rotation group (of a particular space). But in mechanics and, more generally, in physics, this concept is frequently understood as a coordinate transformation (importantly, a transformation of an orthonormal basis), because for any motion of a body there is an inverse transformation which if applied to the frame of reference results in the body being at the same coordinates. For example, in two dimensions rotating a body clockwise about a point keeping the axes fixed is equivalent to rotating the axes counterclockwise about the same point while the body is kept fixed. These two types of rotation are called active and passive transformations.

View the full Wikipedia page for Rotation (mathematics)
↑ Return to Menu

Map (mathematics) in the context of Automorphism

In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object.

View the full Wikipedia page for Automorphism
↑ Return to Menu

Map (mathematics) in the context of Homomorphism

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra.

View the full Wikipedia page for Homomorphism
↑ Return to Menu

Map (mathematics) in the context of Calculus of variations

The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functionsand functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist. Such solutions are known as geodesics. A related problem is posed by Fermat's principle: light follows the path of shortest optical length connecting two points, which depends upon the material of the medium. One corresponding concept in mechanics is the principle of least/stationary action.

View the full Wikipedia page for Calculus of variations
↑ Return to Menu

Map (mathematics) in the context of Johannes Hjelmslev

Johannes Trolle Hjelmslev (Danish: [ˈjelˀmsle̝w]; 7 April 1873 – 16 February 1950) was a mathematician from Hørning, Denmark. Hjelmslev worked in geometry and history of geometry. He was the discoverer and eponym of the Hjelmslev transformation, a method for mapping an entire hyperbolic plane into a circle with a finite radius.He was the father of Louis Hjelmslev.

Originally named Johannes Trolle Petersen, he changed his patronymic to the surname Hjelmslev to avoid confusion with Julius Petersen. Some of his results are known under his original name, including the Petersen–Morley theorem.

View the full Wikipedia page for Johannes Hjelmslev
↑ Return to Menu

Map (mathematics) in the context of Homeomorphism

In mathematics and more specifically in topology, a homeomorphism (from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

Very roughly speaking, a topological space is a geometric object, and a homeomorphism results from a continuous deformation of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this description can be misleading. Some continuous deformations do not produce homeomorphisms, such as the deformation of a line into a point. Some homeomorphisms do not result from continuous deformations, such as the homeomorphism between a trefoil knot and a circle. Homotopy and isotopy are precise definitions for the informal concept of continuous deformation.

View the full Wikipedia page for Homeomorphism
↑ Return to Menu

Map (mathematics) in the context of Morphism

In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Although many examples of morphisms are structure-preserving maps, morphisms need not be maps, but they can be composed in a way that is similar to function composition.

Morphisms and objects are constituents of a category. Morphisms, also called maps or arrows, relate two objects called the source and the target of the morphism. There is a partial operation, called composition, on the morphisms of a category that is defined if the target of the first morphism equals the source of the second morphism. The composition of morphisms behaves like function composition (associativity of composition when it is defined, and existence of an identity morphism for every object).

View the full Wikipedia page for Morphism
↑ Return to Menu