Mainspring in the context of "Clock"

Play Trivia Questions online!

or

Skip to study material about Mainspring in the context of "Clock"

Ad spacer

⭐ Core Definition: Mainspring

A mainspring is a spiral torsion spring of metal ribbon—commonly spring steel—used as a power source in mechanical watches, some clocks, and other clockwork mechanisms. Winding the timepiece, by turning a knob or key, stores energy in the mainspring by twisting the spiral tighter. The force of the mainspring then turns the clock's wheels as it unwinds, until the next winding is needed. The adjectives wind-up and spring-powered refer to mechanisms powered by mainsprings, which also include kitchen timers, metronomes, music boxes, wind-up toys and clockwork radios.


Mainsprings appeared in the first spring-powered clocks, in 15th-century Europe. The mainspring replaced the weight hanging from a cord wrapped around a pulley, which was the power source used in all previous mechanical clocks.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Mainspring in the context of History of timekeeping devices

The history of timekeeping devices dates back to when ancient civilizations first observed astronomical bodies as they moved across the sky. Devices and methods for keeping time have gradually improved through a series of new inventions, starting with measuring time by continuous processes, such as the flow of liquid in water clocks, to mechanical clocks, and eventually repetitive, oscillatory processes, such as the swing of pendulums. Oscillating timekeepers are used in modern timepieces. Sundials and water clocks were first used in ancient Egypt c. 1200 BC and later by the Babylonians, the Greeks and the Chinese. Incense clocks were being used in China by the 6th century. In the medieval period, Islamic water clocks were unrivalled in their sophistication until the mid-14th century. The hourglass, invented in Europe, was one of the few reliable methods of measuring time at sea.

In medieval Europe, purely mechanical clocks were developed after the invention of the bell-striking alarm, used to signal the correct time to ring monastic bells. The weight-driven mechanical clock controlled by the action of a verge and foliot was a synthesis of earlier ideas from European and Islamic science. Mechanical clocks were a major breakthrough, one notably designed and built by Henry de Vick in c. 1360, which established basic clock design for the next 300 years. Minor developments were added, such as the invention of the mainspring in the early 15th century, which allowed small clocks to be built for the first time.

↑ Return to Menu

Mainspring in the context of Accumulator (energy)

An accumulator is an energy storage device: a device which accepts energy, stores energy, and releases energy as needed. Some accumulators accept energy at a low rate (low power) over a long time interval and deliver the energy at a high rate (high power) over a short time interval. Some accumulators accept energy at a high rate over a short time interval and deliver the energy at a low rate over a longer time interval. Some accumulators typically accept and release energy at comparable rates. Various devices can store thermal energy, mechanical energy, and electrical energy. Energy is usually accepted and delivered in the same form. Some devices store a different form of energy than what they receive and deliver performing energy conversion on the way in and on the way out.

Examples of accumulators include steam accumulators, mainsprings, flywheel energy storage, hydraulic accumulators, rechargeable batteries, capacitors, inductors, compensated pulsed alternators (compulsators), and pumped-storage hydroelectric plants.

↑ Return to Menu

Mainspring in the context of Isochronous

A sequence of events is isochronous if the events occur regularly, or at equal time intervals. The term isochronous is used in several technical contexts, but usually refers to the primary subject maintaining a constant period or interval (the reciprocal of frequency), despite variations in other measurable factors in the same system. Isochronous timing is a characteristic of a repeating event, whereas synchronous timing refers to the relationship between two or more events.

↑ Return to Menu

Mainspring in the context of Mechanical watch

A mechanical watch is a watch that uses a clockwork mechanism to measure the passage of time, as opposed to quartz watches which function using the vibration modes of a piezoelectric quartz tuning fork, or radio watches, which are quartz watches synchronized to an atomic clock via radio waves. A mechanical watch is driven by a mainspring which must be wound either periodically by hand or via a self-winding mechanism. Its force is transmitted through a series of gears to power the balance wheel, a weighted wheel which oscillates back and forth at a constant rate. A device called an escapement releases the watch's wheels to move forward a small amount with each swing of the balance wheel, moving the watch's hands forward at a constant rate. The escapement is what makes the 'ticking' sound which is heard in an operating mechanical watch. Mechanical watches evolved in Europe in the 17th century from spring powered clocks, which appeared in the 15th century.

Mechanical watches are typically not as accurate as quartz watches, and they eventually require periodic cleaning, lubrication and calibration by a skilled watchmaker. Since the 1970s and 1980s, as a result of the quartz crisis, quartz watches have taken over most of the watch market, and mechanical watches (especially Swiss-made watches) are now mostly marketed as luxury goods, purchased for their aesthetic and luxury values, for appreciation of their fine craftsmanship, or as a status symbol.

↑ Return to Menu

Mainspring in the context of Torsion spring

A torsion spring is a spring that works by twisting its end along its axis; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional to the amount (angle) it is twisted. There are various types:

  • A torsion bar is a straight bar of metal or rubber that is subjected to twisting (shear stress) about its axis by torque applied at its ends.
  • A more delicate form used in sensitive instruments, called a torsion fiber consists of a fiber of silk, glass, or quartz under tension, that is twisted about its axis.
  • A helical torsion spring, is a metal rod or wire in the shape of a helix (coil) that is subjected to twisting about the axis of the coil by sideways forces (bending moments) applied to its ends, twisting the coil tighter.
  • Clocks use a spiral wound torsion spring (a form of helical torsion spring where the coils are around each other instead of piled up) sometimes called a "clock spring" or colloquially called a mainspring. Those types of torsion springs are also used for attic stairs, clutches, typewriters and other devices that need near constant torque for large angles or even multiple revolutions.
↑ Return to Menu

Mainspring in the context of Synchronous electric clock

An electric clock is a clock that is powered by electricity, as opposed to a mechanical clock which is powered by a hanging weight or a mainspring. The term is often applied to the electrically powered mechanical clocks that were used before quartz clocks were introduced in the 1980s. The first experimental electric clocks were constructed around the 1840s, but they were not widely manufactured until mains electric power became available in the 1890s. In the 1930s, the synchronous electric clock replaced mechanical clocks as the most widely used type of clock.

↑ Return to Menu

Mainspring in the context of Watch

A watch is a timepiece carried or worn by a person. It is designed to maintain a consistent movement despite the motions caused by the person's activities. A wristwatch is worn around the wrist, attached by a watch strap or another type of bracelet, including metal bands or leather straps. A pocket watch is carried in a pocket, often attached to a chain. A stopwatch is a type of watch that measures intervals of time.

During most of their history, beginning in the 16th century, watches were mechanical devices, driven by clockwork, powered by winding a mainspring, and keeping time with an oscillating balance wheel. These are known as mechanical watches. In the 1960s the electronic quartz watch was invented, powered by a battery and keeping time with a vibrating quartz crystal. By the 1980s it had taken over most of the watch market, in what became known as the quartz revolution (or the quartz crisis in Switzerland, whose renowned watch industry it decimated). In the 2010s, smartwatches emerged, small wrist-worn computers with touchscreens and with functions that go far beyond timekeeping.

↑ Return to Menu

Mainspring in the context of Clockwork

Clockwork refers to the inner workings of either mechanical devices called clocks and watches (where it is also called the movement) or other mechanisms that work similarly, using a series of gears driven by a spring or weight.

A clockwork mechanism is often powered by a clockwork motor consisting of a mainspring, a spiral torsion spring of metal ribbon. Energy is stored in the mainspring manually by winding it up, turning a key attached to a ratchet which twists the mainspring tighter. Then the force of the mainspring turns the clockwork gears, until the stored energy is used up. The adjectives wind-up and spring-powered refer to mainspring-powered clockwork devices, which include clocks and watches, kitchen timers, music boxes, and wind-up toys.

↑ Return to Menu