Main-sequence in the context of Pressure-gradient force


Main-sequence in the context of Pressure-gradient force

Main-sequence Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Main-sequence in the context of "Pressure-gradient force"


⭐ Core Definition: Main-sequence

In astrophysics, the main sequence is a classification of stars which appear on plots of stellar color versus brightness as a continuous and distinctive band. Stars spend the majority of their lives on the main sequence, during which core hydrogen burning is dominant. These main-sequence stars, or sometimes interchangeably dwarf stars, are the most numerous true stars in the universe and include the Sun. Color-magnitude plots are known as Hertzsprung–Russell diagrams after Ejnar Hertzsprung and Henry Norris Russell.

When a gaseous nebula undergoes sufficient gravitational collapse, the high pressure and temperature concentrated at the core will trigger the nuclear fusion of hydrogen into helium (see stars). The thermal energy from this process radiates out from the hot, dense core, generating a strong pressure gradient. It is this pressure gradient that counters the star's collapse under gravity, maintaining the star in a state of hydrostatic equilibrium. The star's position on the main sequence is determined primarily by the mass, but also by age and chemical composition. As a result, radiation is not the only method of energy transfer in stars. Convection plays a role in the movement of energy, particularly in the cores of stars greater than 1.3 to 1.5 times the Sun's mass, again depending on age and chemical composition.

↓ Menu
HINT:

In this Dossier

Main-sequence in the context of Sirius A

Sirius is the brightest star in the night sky, located in the southern constellation of Canis Major. Its name is derived from the Greek word Σείριος (Latin script: Seirios; lit.'glowing' or 'scorching'). The star is designated α Canis Majoris, Latinized to Alpha Canis Majoris, and abbreviated α CMa or Alpha CMa. With a visual apparent magnitude of −1.46, Sirius is almost twice as bright as Canopus, the next brightest star. Sirius is a binary star consisting of a main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The distance between the two varies between 8.2 and 31.5 astronomical units as they orbit every 50 years.

Sirius appears bright because of its intrinsic luminosity and its proximity to the Solar System. At a distance of 2.64 parsecs (8.6 ly), the Sirius system is one of Earth's nearest neighbours. Sirius is gradually moving closer to the Solar System and it is expected to increase in brightness slightly over the next 60,000 years to reach a peak magnitude of −1.68.Coincidentally, at about the same time, Sirius will take its turn as the southern Pole Star, around the year 66,270 AD. In that year, Sirius will come to within 1.6 degrees of the south celestial pole. This is due to axial precession and proper motion of Sirius itself which moves slowly in the SSW direction, so it will be visible from the southern hemisphere only. After that time, its distance will begin to increase, and it will become fainter, but it will continue to be the brightest star in the Earth's night sky for approximately the next 210,000 years, at which point Vega, another A-type star that is intrinsically more luminous than Sirius, becomes the brightest star.

View the full Wikipedia page for Sirius A
↑ Return to Menu

Main-sequence in the context of Regulus

Regulus is the brightest object in the constellation Leo and one of the brightest stars in the night sky. It has the Bayer designation designated α Leonis, which is Latinized to Alpha Leonis, and abbreviated Alpha Leo or α Leo. Regulus appears single, but is actually a quadruple star system composed of four stars that are organized into two pairs. The system lies approximately 79 light years from the Solar System.

The spectroscopic binary Regulus A consists of a blue-white main-sequence star and its companion, a pre-white dwarf.Regulus BC, also known as HD 87884, is separated from Regulus A by 176 and is itself a close pair.

View the full Wikipedia page for Regulus
↑ Return to Menu

Main-sequence in the context of Canis Minor

Canis Minor is a small constellation in the northern celestial hemisphere. In the second century, it was included as an asterism, or pattern, of two stars in Ptolemy's 48 constellations, and it is counted among the 88 modern constellations. Its name is Latin for "lesser dog", in contrast to Canis Major, the "greater dog"; both figures are commonly represented as following the constellation of Orion the hunter.

Canis Minor contains only two stars brighter than the fourth magnitude, Procyon (Alpha Canis Minoris), with a magnitude of 0.34, and Gomeisa (Beta Canis Minoris), with a magnitude of 2.9. The constellation's dimmer stars were noted by Johann Bayer, who named eight stars including Alpha and Beta, and John Flamsteed, who numbered fourteen. Procyon is the eighth-brightest star in the night sky, as well as one of the closest. A yellow-white main-sequence star, it has a white dwarf companion. Gomeisa is a blue-white main-sequence star. Luyten's Star is a ninth-magnitude red dwarf and the Solar System's next closest stellar neighbour in the constellation after Procyon. Additionally, Procyon and Luyten's Star are only 1.12 light-years away from each other, and Procyon would be the brightest star in Luyten's Star's sky. The fourth-magnitude HD 66141, which has evolved into an orange giant towards the end of its life cycle, was discovered to have a planet in 2012. There are two faint deep-sky objects within the constellation's borders. The 11 Canis-Minorids are a meteor shower that can be seen in early December.

View the full Wikipedia page for Canis Minor
↑ Return to Menu