Magnitude (vector) in the context of Square root


Magnitude (vector) in the context of Square root

Magnitude (vector) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Magnitude (vector) in the context of "Square root"


⭐ Core Definition: Magnitude (vector)

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and zero is only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

A seminorm satisfies the first two properties of a norm but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space.

↓ Menu
HINT:

In this Dossier

Magnitude (vector) in the context of Relativistic speed

Relativistic speed refers to speed at which relativistic effects become significant to the desired accuracy of measurement of the phenomenon being observed. Relativistic effects are those discrepancies between values calculated by models considering and not considering relativity. Related words are velocity, rapidity, and celerity which is proper velocity. Speed is a scalar, being the magnitude of the velocity vector which in relativity is the four-velocity and in three-dimension Euclidean space a three-velocity. Speed is empirically measured as average speed, although current devices in common use can estimate speed over very small intervals and closely approximate instantaneous speed. Non-relativistic discrepancies include cosine error which occurs in speed detection devices when only one scalar component of the three-velocity is measured and the Doppler effect which may affect observations of wavelength and frequency.

Relativistic effects are highly non-linear and for everyday purposes are insignificant because the Newtonian model closely approximates the relativity model. In special relativity the Lorentz factor is a measure of time dilation, length contraction and the relativistic mass increase of a moving object.

View the full Wikipedia page for Relativistic speed
↑ Return to Menu

Magnitude (vector) in the context of Thrust

Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that system.The force applied on a surface in a direction perpendicular or normal to the surface is also called thrust. Force, and thus thrust, is measured using the International System of Units (SI) in newtons (symbol: N), and represents the amount needed to accelerate 1 kilogram of mass at the rate of 1 metre per second per second. In mechanical engineering, force orthogonal to the main load (such as in parallel helical gears) is referred to as static thrust.

View the full Wikipedia page for Thrust
↑ Return to Menu

Magnitude (vector) in the context of Burgers vector

In materials science, the Burgers vector, named after Dutch physicist Jan Burgers, is a vector, often denoted as b, that represents the magnitude and direction of the lattice distortion resulting from a dislocation in a crystal lattice.

View the full Wikipedia page for Burgers vector
↑ Return to Menu