Lyapunov stability in the context of Exponential stability


Lyapunov stability in the context of Exponential stability

Lyapunov stability Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Lyapunov stability in the context of "Exponential stability"


⭐ Core Definition: Lyapunov stability

Various types of stability may be discussed for the solutions of differential equations or difference equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov. In simple terms, if the solutions that start out near an equilibrium point stay near forever, then is Lyapunov stable. More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable (see asymptotic analysis). The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inputs.

↓ Menu
HINT:

In this Dossier

Lyapunov stability in the context of Stability theory

In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation, for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature at a later time as a result of the maximum principle. In partial differential equations one may measure the distances between functions using L norms or the sup norm, while in differential geometry one may measure the distance between spaces using the Gromov–Hausdorff distance.

In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of any point is in a small enough neighborhood or it stays in a small (but perhaps, larger) neighborhood. Various criteria have been developed to prove stability or instability of an orbit. Under favorable circumstances, the question may be reduced to a well-studied problem involving eigenvalues of matrices. A more general method involves Lyapunov functions. In practice, any one of a number of different stability criteria are applied.

View the full Wikipedia page for Stability theory
↑ Return to Menu

Lyapunov stability in the context of Libration point orbit

In orbital mechanics, a libration point orbit (LPO) is a quasiperiodic orbit around a Lagrange point. Libration is a form of orbital motion exhibited, for example, in the Earth–Moon system. Trojan bodies also exhibit libration dynamics.

Two varieties of libration point orbits amenable to Lyapunov stability are halo orbits and Lissajous orbits

View the full Wikipedia page for Libration point orbit
↑ Return to Menu

Lyapunov stability in the context of Structural stability

In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C-small perturbations).

Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself. Variants of this notion apply to systems of ordinary differential equations, vector fields on smooth manifolds and flows generated by them, and diffeomorphisms.

View the full Wikipedia page for Structural stability
↑ Return to Menu