Lunar surface in the context of "Copernican period"

Play Trivia Questions online!

or

Skip to study material about Lunar surface in the context of "Copernican period"

Ad spacer

⭐ Core Definition: Lunar surface

The geology of the Moon (sometimes called selenology, although the latter term can refer more generally to "lunar science") is the structure and composition of the Moon, which is quite different from that of Earth. The Moon lacks a true atmosphere outside of a sparse layer of gas. Because of this, the absence of free oxygen and water eliminates erosion due to weather. Instead, the surface is eroded much more slowly through the bombardment of the lunar surface by micrometeorites. It does not have any known form of plate tectonics, along with having a lower gravity compared to Earth. Because of its small size, it cooled faster in the early days of its formation. In addition to impacts, the geomorphology of the lunar surface has been shaped by volcanism, which is now thought to have ended less than 50 million years ago. The Moon is a differentiated body, with a crust, mantle, and core.

Geological studies of the Moon are based on a combination of Earth-based telescope observations, measurements from orbiting spacecraft, lunar samples, and geophysical data. Six locations were sampled directly during the crewed Apollo program landings from 1969 to 1972, which returned 382 kilograms (842 lb) of lunar rock and lunar soil to Earth. In addition, three robotic Soviet Luna spacecraft returned another 301 grams (10.6 oz) of samples, and the Chinese robotic Chang'e 5 returned a sample of 1,731 g (61.1 oz) in 2020.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Lunar surface in the context of Moon

The Moon is the only natural satellite of Earth. It orbits around Earth at an average distance of 384,399 kilometres (238,854 mi), a distance roughly 30 times the width of Earth. It completes an orbit (lunar month) in relation to Earth and the Sun (synodically) every 29.5 days. The Moon and Earth are bound by gravitational attraction, which is stronger on their facing sides. The resulting tidal forces are the main driver of Earth's tides, and have pulled the Moon to always face Earth with the same near side. This tidal locking effectively synchronizes the Moon's rotation period (lunar day) to its orbital period (lunar month).

In geophysical terms, the Moon is a planetary-mass object or satellite planet. Its mass is 1.2% that of the Earth, and its diameter is 3,474 km (2,159 mi), roughly one-quarter of Earth's (about as wide as the contiguous United States). Within the Solar System, it is larger and more massive than any known dwarf planet, and the fifth-largest and fifth-most massive moon, as well as the largest and most massive in relation to its parent planet. Its surface gravity is about one-sixth of Earth's, about half that of Mars, and the second-highest among all moons in the Solar System after Jupiter's moon Io. The body of the Moon is differentiated and terrestrial, with only a minuscule hydrosphere, atmosphere, and magnetic field. The lunar surface is covered in regolith dust, which mainly consists of the fine material ejected from the lunar crust by impact events. The lunar crust is marked by impact craters, with some younger ones featuring bright ray-like streaks. The Moon was volcanically active until 1.2 billion years ago, surfacing lava mostly on the thinner near side of the Moon, filling ancient craters, which through cooling formed the today prominently visible dark plains of basalt called maria ('seas'). The Moon formed out of material from Earth, ejected by a giant impact into Earth of a hypothesized Mars-sized body named Theia 4.51 billion years ago, not long after Earth's formation.

↑ Return to Menu

Lunar surface in the context of Exploration of the Moon

The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made a deliberate impact on the surface of the Moon on 14 September, 1959. Prior to that the only available means of lunar exploration had been observations from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes, having made his own telescope in 1609. The mountains and craters on the lunar surface were among his first observations.

Human exploration of the Moon since Luna 2 has consisted of both crewed and uncrewed missions. NASA's Apollo program has been the only program to successfully land humans on the Moon, which it did six times on the near side in the late 20th century. The first human landing took place in 1969, when the Apollo 11 astronauts Buzz Aldrin and Neil Armstrong touched down on the surface in the region of Mare Tranquillitatis, leaving scientific instruments upon the mission's completion and returning lunar samples to Earth. All lunar missions had taken place on the lunar near side until the first soft landing on the far side of the Moon was made by the CNSA robotic spacecraft Chang'e 4 in early 2019, which successfully deployed the Yutu-2 robotic lunar rover. On 25 June 2024, CNSA's Chang'e 6 conducted the first lunar sample return from the far side of the Moon.

↑ Return to Menu

Lunar surface in the context of Apollo 10

Apollo 10 (May 18–26, 1969) was the fourth human spaceflight in the United States' Apollo program and the second to orbit the Moon. NASA, the mission's operator, described it as a "dress rehearsal" for the first Moon landing (Apollo 11, two months later). It was designated an "F" mission, intended to test all spacecraft components and procedures short of actual descent and landing.

After the spacecraft reached lunar orbit, astronaut John Young remained in the Command and Service Module (CSM) while astronauts Thomas Stafford and Gene Cernan flew the Apollo Lunar Module (LM) to within 14.4 kilometers (7.8 nautical miles; 9 miles) of the lunar surface, the point at which powered descent for landing would begin on a landing mission. After four orbits they rejoined Young in the CSM and, after the CSM completed its 31st orbit of the Moon, they returned safely to Earth.

↑ Return to Menu

Lunar surface in the context of Man in the Moon

In many cultures, several pareidolic images of a human face, head or body are recognized in the disc of the full moon; they are generally known as the Man in the Moon. The images are based on the appearance of the dark areas (known as lunar maria) and the lighter-colored highlands (and some lowlands) of the lunar surface.

↑ Return to Menu

Lunar surface in the context of Earth-Moon system

The Moon is the only natural satellite of Earth. It orbits around Earth at an average distance of 384,399 kilometres (238,854 mi), a distance roughly 30 times the width of Earth. It completes an orbit (lunar month) in relation to Earth and the Sun (synodically) every 29.5 days. The Moon and Earth are bound by gravitational attraction, which is stronger on the sides facing each other. The resulting tidal forces are the main driver of Earth's tides, and have pulled the Moon to always face Earth with the same near side. This tidal locking effectively synchronizes the Moon's rotation period (lunar day) to its orbital period (lunar month).

In geophysical terms, the Moon is a planetary-mass object or satellite planet. Its mass is 1.2% that of the Earth, and its diameter is 3,474 km (2,159 mi), roughly one-quarter of Earth's (about as wide as the contiguous United States). Within the Solar System, it is larger and more massive than any known dwarf planet, and the fifth-largest and fifth-most massive moon, as well as the largest and most massive in relation to its parent planet. Its surface gravity is about one-sixth of Earth's, about half that of Mars, and the second-highest among all moons in the Solar System after Jupiter's moon Io. The body of the Moon is differentiated and terrestrial, with only a minuscule hydrosphere, atmosphere, and magnetic field. The lunar surface is covered in regolith dust, which mainly consists of the fine material ejected from the lunar crust by impact events. The lunar crust is marked by impact craters, with some younger ones featuring bright ray-like streaks. The Moon was volcanically active until 1.2 billion years ago, surfacing lava mostly on the thinner near side of the Moon, filling ancient craters, which through cooling formed the today prominently visible dark plains of basalt called maria ('seas'). The origin of the Moon is not clear, although it has been hypothesized to have formed out of material from Earth, ejected by a giant impact into Earth of a Mars-sized body named Theia 4.51 billion years ago, not long after Earth's formation.

↑ Return to Menu