Neural network (machine learning) in the context of "Machine learning"

⭐ In the context of Machine Learning, Neural networks are considered…

Ad spacer

⭐ Core Definition: Neural network (machine learning)

In machine learning, a neural network or neural net (NN), also called artificial neural network (ANN), is a computational model inspired by the structure and functions of biological neural networks.

A neural network consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial neuron models that mimic biological neurons more closely have also been recently investigated and shown to significantly improve performance. These are connected by edges, which model the synapses in the brain. Each artificial neuron receives signals from connected neurons, then processes them and sends a signal to other connected neurons. The "signal" is a real number, and the output of each neuron is computed by some non-linear function of the totality of its inputs, called the activation function. The strength of the signal at each connection is determined by a weight, which adjusts during the learning process.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Neural network (machine learning) in the context of Machine learning

Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalise to unseen data, and thus perform tasks without explicit instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance.

ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics.

↓ Explore More Topics
In this Dossier

Neural network (machine learning) in the context of Deep learning

In machine learning, deep learning focuses on utilizing multilayered neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and revolves around stacking artificial neurons into layers and "training" them to process data. The adjective "deep" refers to the use of multiple layers (ranging from three to several hundred or thousands) in the network. Methods used can be supervised, semi-supervised or unsupervised.

Some common deep learning network architectures include fully connected networks, deep belief networks, recurrent neural networks, convolutional neural networks, generative adversarial networks, transformers, and neural radiance fields. These architectures have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, climate science, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance.

↑ Return to Menu

Neural network (machine learning) in the context of Neural network

A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural networks.

↑ Return to Menu

Neural network (machine learning) in the context of Artificial neuron

An artificial neuron is a mathematical function conceived as a model of a biological neuron in a neural network. The artificial neuron is the elementary unit of an artificial neural network.

The design of the artificial neuron was inspired by biological neural circuitry. Its inputs are analogous to excitatory postsynaptic potentials and inhibitory postsynaptic potentials at neural dendrites, or activation. Its weights are analogous to synaptic weights, and its output is analogous to a neuron's action potential which is transmitted along its axon.

↑ Return to Menu