Logical consistency in the context of Mathematical induction


Logical consistency in the context of Mathematical induction

Logical consistency Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Logical consistency in the context of "Mathematical induction"


⭐ Core Definition: Logical consistency

In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences (informally "axioms") and the set of closed sentences provable from under some (specified, possibly implicitly) formal deductive system. The set of axioms is consistent when there is no formula such that and . A trivial theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a model, i.e., there exists an interpretation under which all axioms in the theory are true. This is what consistent meant in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.

In a sound formal system, every satisfiable theory is consistent, but the converse does not hold. If there exists a deductive system for which these semantic and syntactic definitions are equivalent for any theory formulated in a particular deductive logic, the logic is called complete. The completeness of the propositional calculus was proved by Paul Bernays in 1918 and Emil Post in 1921, while the completeness of (first order) predicate calculus was proved by Kurt Gödel in 1930, and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann (1924), von Neumann (1927) and Herbrand (1931). Stronger logics, such as second-order logic, are not complete.

↓ Menu
HINT:

In this Dossier

Logical consistency in the context of Logical possibility

A logical possibility is a logical proposition that cannot be disproved, using the axioms and rules of a given system of logic. The logical possibility of a proposition will depend upon the system of logic being considered, rather than on the violation of any single rule. Some systems of logic restrict inferences from inconsistent propositions or even allow for true contradictions. Other logical systems have more than two truth-values instead of a binary of such values. Some assume the system in question is classical propositional logic. Similarly, the criterion for logical possibility is often based on whether or not a proposition is contradictory and as such, is often thought of as the broadest type of possibility.

In modal logic, a logical proposition is possible if it is true in some possible world. The universe of "possible worlds" depends upon the axioms and rules of the logical system in which one is working, but given some logical system, any logically consistent collection of statements is a possible world. The modal diamond operator is used to express possibility: denotes "proposition is possible".

View the full Wikipedia page for Logical possibility
↑ Return to Menu