Line (geometry) in the context of Affine function


Line (geometry) in the context of Affine function

Line (geometry) Study page number 1 of 8

Play TriviaQuestions Online!

or

Skip to study material about Line (geometry) in the context of "Affine function"


⭐ Core Definition: Line (geometry)

In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature. It is a special case of a curve and an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points (its endpoints).

Euclid's Elements defines a straight line as a "breadthless length" that "lies evenly with respect to the points on itself", and introduced several postulates as basic unprovable properties on which the rest of geometry was established. Euclidean line and Euclidean geometry are terms introduced to avoid confusion with generalizations introduced since the end of the 19th century, such as non-Euclidean, projective, and affine geometry.

↓ Menu
HINT:

In this Dossier

Line (geometry) in the context of Geometry

Geometry is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, a problem that was stated in terms of elementary arithmetic, and remained unsolved for several centuries.

View the full Wikipedia page for Geometry
↑ Return to Menu

Line (geometry) in the context of Imaginary line

In general, an imaginary line is usually any sort of geometric line (more generally, curves) that has only an abstract definition and does not physically exist. They are often used to properly identify places on a map.

Some outside geography do exist. A centerline is a nautical term for a line down the center of a vessel lengthwise.

View the full Wikipedia page for Imaginary line
↑ Return to Menu

Line (geometry) in the context of Parabola

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the directrix. The parabola is the locus of points in that plane that are equidistant from the directrix and the focus. Another description of a parabola is as a conic section, created from the intersection of a right circular conical surface and a plane parallel to another plane that is tangential to the conical surface.

View the full Wikipedia page for Parabola
↑ Return to Menu

Line (geometry) in the context of Regular polygons

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex or star. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a straight line), if the edge length is fixed.

View the full Wikipedia page for Regular polygons
↑ Return to Menu

Line (geometry) in the context of Flow velocity

In continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is scalar, the flow speed.It is also called velocity field; when evaluated along a line, it is called a velocity profile (as in, e.g., law of the wall).

View the full Wikipedia page for Flow velocity
↑ Return to Menu

Line (geometry) in the context of Hyperplane

In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line.

Most commonly, the ambient space is n-dimensional Euclidean space, in which case the hyperplanes are the (n − 1)-dimensional "flats", each of which separates the space into two half spaces. A reflection across a hyperplane is a kind of motion (geometric transformation preserving distance between points), and the group of all motions is generated by the reflections. A convex polytope is the intersection of half-spaces.

View the full Wikipedia page for Hyperplane
↑ Return to Menu

Line (geometry) in the context of Dimension

In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on it – for example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on it – for example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces.

In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was found necessary to describe electromagnetism. The four dimensions (4D) of spacetime consist of events that are not absolutely defined spatially and temporally, but rather are known relative to the motion of an observer. Minkowski space first approximates the universe without gravity; the pseudo-Riemannian manifolds of general relativity describe spacetime with matter and gravity. 10 dimensions are used to describe superstring theory (6D hyperspace + 4D), 11 dimensions can describe supergravity and M-theory (7D hyperspace + 4D), and the state-space of quantum mechanics is an infinite-dimensional function space.

View the full Wikipedia page for Dimension
↑ Return to Menu

Line (geometry) in the context of Arc (geometry)

In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.

Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that appeared more than 2000 years ago in Euclid's Elements: "The [curved] line is […] the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which […] will leave from its imaginary moving some vestige in length, exempt of any width."

View the full Wikipedia page for Arc (geometry)
↑ Return to Menu

Line (geometry) in the context of Plane (mathematics)

In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the whole space.

Several notions of a plane may be defined. The Euclidean plane follows Euclidean geometry, and in particular the parallel postulate. A projective plane may be constructed by adding "points at infinity" where two otherwise parallel lines would intersect, so that every pair of lines intersects in exactly one point. The elliptic plane may be further defined by adding a metric to the real projective plane. One may also conceive of a hyperbolic plane, which obeys hyperbolic geometry and has a negative curvature.

View the full Wikipedia page for Plane (mathematics)
↑ Return to Menu

Line (geometry) in the context of Stem (music)

In musical notation, stems are the "thin, vertical lines that are directly connected to the [note] head." Stems may point up or down. Different-pointing stems indicate the voice for polyphonic music written on the same staff. Within one voice, the stems usually point down for notes on the middle line or higher, and up for those below. If the stem points up from a notehead, the stem originates from the right-hand side of the note, but if it points down, it originates from the left. If there are multiple notes beamed together, the stem's direction is defined by the average of the lowest and highest notes in the beam. There is an exception to this rule: if a chord contains a second, the stem runs between the two notes with the higher being placed on the right of the stem and the lower on the left. If the chord contains an odd numbered cluster of notes a second apart (such as C, D, E), the outer two will be on the correct side of the stem, while the middle note will be on the wrong side.

The length of a stem should be that of an octave on the staff, going to either an octave higher or lower than the notehead, depending on which way the stem is pointing. If a note head is on a ledger line more than an octave away from the middle line of a staff, the stem will be elongated to touch the middle line. In any polyphonic music in which two parts are written on the same staff, stems are typically shortened to keep the music visually centered upon the staff.

View the full Wikipedia page for Stem (music)
↑ Return to Menu

Line (geometry) in the context of Angle

In geometry, an angle is formed by two lines that meet at a point. Each line is called a side of the angle, and the point they share is called the vertex of the angle. The term angle is used to denote both geometric figures and their size or magnitude as associated quantity. Angular measure or measure of angle are sometimes used to distinguish between the measure of the quantity and figure itself. The measurement of angles is intrinsically linked with circles and rotation, and this is often visualized or defined using the arc of a circle centered at the vertex and lying between the sides.

View the full Wikipedia page for Angle
↑ Return to Menu

Line (geometry) in the context of Bearing (mechanical)

A bearing is a machine element that constrains relative motion to only the desired motion and reduces friction between moving parts. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts. Most bearings facilitate the desired motion by minimizing friction. Bearings are classified broadly according to the type of operation, the motions allowed, or the directions of the loads (forces) applied to the parts.

The term "bearing" is derived from the verb "to bear"; a bearing being a machine element that allows one part to bear (i.e., to support) another. The simplest bearings are bearing surfaces, cut or formed into a part, with varying degrees of control over the form, size, roughness, and location of the surface. Other bearings are separate devices installed into a machine or machine part. The most sophisticated bearings for the most demanding applications are very precise components; their manufacture requires some of the highest standards of current technology.

View the full Wikipedia page for Bearing (mechanical)
↑ Return to Menu

Line (geometry) in the context of Antipodes

In geography, the antipode (/ˈæntɪˌpd, ænˈtɪpədi/) of any spot on Earth is the point on Earth's surface diametrically opposite to it. A pair of points antipodal (/ænˈtɪpədəl/) to each other are situated such that a straight line connecting the two would pass through Earth's center. Antipodal points are as far away from each other as possible. The North and South Poles are antipodes of each other.

In the Northern Hemisphere, "the Antipodes" may refer to Australia and New Zealand, and Antipodeans to their inhabitants. Geographically, the antipodes of the British Isles are in the Pacific Ocean, south of New Zealand. This gave rise to the name of the Antipodes Islands of New Zealand, which are close to the antipode of London. The antipodes of Australia are in the North Atlantic Ocean, while parts of Spain, Portugal, France and Morocco are antipodal to New Zealand.

View the full Wikipedia page for Antipodes
↑ Return to Menu

Line (geometry) in the context of Topological

Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.

A topological space is a set endowed with a structure, called a topology, which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. The following are basic examples of topological properties: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connectedness, which allows distinguishing a circle from two non-intersecting circles.

View the full Wikipedia page for Topological
↑ Return to Menu

Line (geometry) in the context of Geodesic

In geometry, a geodesic (/ˌ.əˈdɛsɪk, --, -ˈdsɪk, -zɪk/) is a curve representing in some sense the locally shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

The noun geodesic and the adjective geodetic come from geodesy, the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's surface. For a spherical Earth, it is a segment of a great circle (see also great-circle distance). The term has since been generalized to more abstract mathematical spaces; for example, in graph theory, one might consider a geodesic between two vertices/nodes of a graph.

View the full Wikipedia page for Geodesic
↑ Return to Menu