Leonard Hayflick in the context of "Mycoplasma pneumoniae"

Play Trivia Questions online!

or

Skip to study material about Leonard Hayflick in the context of "Mycoplasma pneumoniae"

Ad spacer

⭐ Core Definition: Leonard Hayflick

Leonard Hayflick (May 20, 1928 – August 1, 2024) was an American anatomist who was Professor of Anatomy at the UCSF School of Medicine, and was Professor of Medical Microbiology at Stanford University School of Medicine. He was also past president of the Gerontological Society of America and was a founding member of the council of the National Institute on Aging (NIA). The recipient of a number of research prizes and awards, including the 1991 Sandoz Prize for Gerontological Research, he studied the ageing process for more than fifty years. He is known for discovering that normal human cells divide for a limited number of times in vitro (refuting the contention by Alexis Carrel that normal body cells are immortal). This is known as the Hayflick limit. His discoveries overturned a 60-year old dogma that all cultured cells are immortal. Hayflick demonstrated that normal cells have a memory and can remember what doubling level they have reached. He demonstrated that his normal human cell strains were free from contaminating viruses. His cell strain WI-38 soon replaced primary monkey kidney cells and became the substrate for the production of most of the world's human virus vaccines. Hayflick discovered that the etiological agent of primary atypical pneumonia (also called "walking pneumonia") was not a virus as previously believed. He was the first to cultivate the causative organism called a mycoplasma, the smallest free-living organism, which Hayflick isolated on a unique culture medium that bears his name. He named the organism Mycoplasma pneumoniae.

In 1959, Hayflick developed the first inverted microscope for use in cell culture research. To this day, all inverted microscopes used in cell culture laboratories worldwide are descended from this prototype. His microscope was accessioned by the Smithsonian Institution in 2009.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Leonard Hayflick in the context of Cellular senescence

Cellular senescence is a phenomenon characterized by the cessation of cell division. In their experiments during the early 1960s, Leonard Hayflick and Paul Moorhead found that normal human fetal fibroblasts in culture reach a maximum of approximately 50 cell population doublings before becoming senescent. This process called the Hayflick limit is also known as "replicative senescence", since it is brought about through replication. Hayflick's discovery of mortal cells paved the path for the discovery and understanding of cellular aging molecular pathways. Cellular senescence can be initiated by a wide variety of stress-inducing factors. These stress factors include both environmental and internal damaging events, abnormal cellular growth, oxidative stress, autophagy factors, among many other things.

The physiological importance of cell senescence has been attributed to prevention of carcinogenesis, and more recently, aging, development, and tissue repair. Senescent cells contribute to the aging phenotype, including frailty syndrome, sarcopenia, and aging-associated diseases. Senescent astrocytes and microglia contribute to neurodegeneration.

↑ Return to Menu

Leonard Hayflick in the context of Biogerontology

Biogerontology is the sub-field of gerontology concerned with the biological aging process, its evolutionary origins, and potential means to intervene in the process. The term "biogerontology" was coined by S. Rattan, and came in regular use with the start of the journal Biogerontology in 2000. It involves interdisciplinary research on the causes, effects, and mechanisms of biological aging. Biogerontologist Leonard Hayflick has said that the natural average lifespan for a human is around 92 years and, if humans do not invent new approaches to treat aging, they will be stuck with this lifespan. James Vaupel has predicted that life expectancy in industrialized countries will reach 100 for children born after the year 2000. Many surveyed biogerontologists have predicted life expectancies of more than three centuries for people born after the year 2100. Other scientists, more controversially, suggest the possibility of unlimited lifespans for those currently living. For example, Aubrey de Grey offers the "tentative timeframe" that with adequate funding of research to develop interventions in aging such as strategies for engineered negligible senescence, "we have a 50/50 chance of developing technology within about 25 to 30 years from now that will, under reasonable assumptions about the rate of subsequent improvements in that technology, allow us to stop people from dying of aging at any age". The idea of this approach is to use presently available technology to extend lifespans of currently living humans long enough for future technological progress to resolve any remaining aging-related issues. This concept has been referred to as longevity escape velocity.

Biomedical gerontology, also known as experimental gerontology and life extension, is a sub-discipline of biogerontology endeavoring to slow, prevent, and even reverse aging in both humans and animals.

↑ Return to Menu

Leonard Hayflick in the context of Hayflick limit

The Hayflick limit, or Hayflick phenomenon, is the number of times a normal somatic, differentiated human cell population will divide before cell division stops.

The concept of the Hayflick limit was advanced by American anatomist Leonard Hayflick in 1961, at the Wistar Institute in Philadelphia, Pennsylvania. Hayflick demonstrated that a normal human fetal cell population will divide between 40 and 60 times in cell culture before entering a senescence phase. This finding refuted the contention by Alexis Carrel that normal cells are immortal.

↑ Return to Menu