Lens (anatomy) in the context of "Compound eye"

Play Trivia Questions online!

or

Skip to study material about Lens (anatomy) in the context of "Compound eye"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Lens (anatomy) in the context of Human eye

The human eye is a sensory organ in the visual system that reacts to visible light allowing eyesight. Other functions include maintaining the circadian rhythm, and keeping balance.

The eye can be considered as a living optical device. It is approximately spherical in shape, with its outer layers, such as the outermost, white part of the eye (the sclera) and one of its inner layers (the pigmented choroid) keeping the eye essentially light tight except on the eye's optic axis. In order, along the optic axis, the optical components consist of a first lens (the cornea—the clear part of the eye) that accounts for most of the optical power of the eye and accomplishes most of the focusing of light from the outside world; then an aperture (the pupil) in a diaphragm (the iris—the coloured part of the eye), which controls the amount of light entering the interior of the eye; then another lens (the crystalline lens) that accomplishes the remaining focusing of light into images; and finally a light-sensitive part of the eye (the retina), where the images fall and are processed. The retina makes a connection to the brain via the optic nerve. The remaining components of the eye keep it in its required shape, nourish and maintain it, and protect it.

↑ Return to Menu

Lens (anatomy) in the context of Near-sightedness

Myopia, also known as near-sightedness and short-sightedness, is an eye condition where light from distant objects focuses in front of, instead of on, the retina. As a result, distant objects appear blurry, while close objects appear normal. Other symptoms may include headaches and eye strain. Severe myopia is associated with an increased risk of macular degeneration, retinal detachment, cataracts, and glaucoma.

Myopia results from the length of the eyeball growing too long or less commonly the lens being too strong. It is a type of refractive error. Diagnosis is by the use of cycloplegics during eye examination.

↑ Return to Menu

Lens (anatomy) in the context of Far-sightedness

Far-sightedness, also known as long-sightedness, hypermetropia, and hyperopia, is a condition of the eye where distant objects are seen clearly but near objects appear blurred. This blur is due to incoming light being focused behind, instead of on, the retina due to insufficient accommodation by the lens. Minor hypermetropia in young patients is usually corrected by their accommodation, without any defects in vision. But, due to this accommodative effort for distant vision, people may complain of eye strain during prolonged reading. If the hypermetropia is high, there will be defective vision for both distance and near. People may also experience accommodative dysfunction, binocular dysfunction, amblyopia, and strabismus. Newborns are almost invariably hypermetropic, but it gradually decreases as the newborn gets older.

There are many causes for this condition. It may occur when the axial length of eyeball is too short or if the lens or cornea is flatter than normal. Changes in refractive index of lens, alterations in position of the lens or absence of lens are the other main causes. Risk factors include a family history of the condition, diabetes, certain medications, and tumors around the eye. It is a type of refractive error. Diagnosis is based on an eye exam.

↑ Return to Menu

Lens (anatomy) in the context of Eye

An eye is a sensory organ that allows an organism to perceive visual information. It detects light and converts it into electro-chemical impulses in neurons (neurones). It is part of an organism's visual system.

In higher organisms, the eye is a complex optical system that collects light from the surrounding environment, regulates its intensity through a diaphragm, focuses it through an adjustable assembly of lenses to form an image, converts this image into a set of electrical signals, and transmits these signals to the brain through neural pathways that connect the eye via the optic nerve to the visual cortex and other areas of the brain.

↑ Return to Menu

Lens (anatomy) in the context of Blood vessel

Blood vessels are the tubular structures of a circulatory system transporting blood in animal bodies. Blood vessels transport blood cells, nutrients, and oxygen to most of the tissues of a body, and also transport waste products and carbon dioxide away from the tissues. Some tissues – such as cartilage, epithelium, and the lens and cornea of the eye – are not supplied with blood vessels, so are termed avascular.

There are five types of blood vessels: the arteries, which carry the blood away from the heart; the arterioles; the capillaries, where the exchange of water and chemicals between the blood and tissues occurs; the venules; and the veins, which carry blood from the capillaries back towards the heart.

↑ Return to Menu

Lens (anatomy) in the context of Cornea

The cornea is the transparent front part of the eyeball which covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical power. In humans, the refractive power of the cornea is approximately 43 dioptres. The cornea can be reshaped by surgical procedures such as LASIK.

While the cornea contributes most of the eye's focusing power, its focus is fixed. Accommodation (the refocusing of light to better view near objects) is accomplished by changing the geometry of the lens. Medical terms related to the cornea often start with the prefix "kerat-" from the Greek word κέρας, horn.

↑ Return to Menu

Lens (anatomy) in the context of Cataract

A cataract is a cloudy area in the lens of the eye that leads to a decrease in vision of the eye. Cataracts often develop slowly and can affect one or both eyes. Symptoms may include faded colours, blurry or double vision, halos around light, trouble with bright lights, and difficulty seeing at night. This may result in trouble driving, reading and recognizing faces. Poor vision caused by cataracts may also result in an increased risk of falling and depression. In 2020 Cataracts caused 39.6% of all cases of blindness and 28.3% of visual impairment worldwide. Cataracts remain the single most common cause of global blindness.

Cataracts are most commonly due to aging but may also be due to trauma or radiation exposure, be present from birth or occur following eye surgery for other problems. Risk factors include diabetes, longstanding use of corticosteroid medication, smoking tobacco, prolonged exposure to sunlight and alcohol. In addition, poor nutrition, obesity, chronic kidney disease and autoimmune diseases have been recognized in various studies as contributing to the development of cataracts. Cataract formation is primarily driven by oxidative stress, which damages lens proteins, leading to their aggregation and the accumulation of clumps of protein or yellow-brown pigment in the lens. This reduces the transmission of light to the retina at the back of the eye, impairing vision. Additionally, alterations in the lens's metabolic processes, including imbalances in calcium and other ions, contribute to cataract development. Diagnosis is typically through an eye examination, with ophthalmoscopy and slit-lamp examination being the most effective methods. During ophthalmoscopy the pupil is dilated and the red reflex is examined for any opacities in the lens. Slit-lamp examination provides further details on the characteristics, location and extent of the cataract.

↑ Return to Menu

Lens (anatomy) in the context of Presbyopia

Presbyopia is a physiological insufficiency of optical accommodation associated with the aging of the eye; it results in progressively worsening ability to focus clearly on close objects. Also known as age-related farsightedness (or as age-related long sight in the UK), it affects many adults over the age of 40. A common sign of presbyopia is difficulty in reading small print, which results in having to hold reading material farther away. Other symptoms associated can be headaches and eyestrain. Different people experience different degrees of problems. Other types of refractive errors may exist at the same time as presbyopia. While exhibiting similar symptoms of blur in the vision for close objects, this condition has nothing to do with hypermetropia or far-sightedness, which is almost invariably present in newborns and usually decreases as the newborn gets older.

Presbyopia is a typical part of the aging process. It occurs due to age-related changes in the lens (decreased elasticity and increased hardness) and ciliary muscle (decreased strength and ability to move the lens), causing the eye to focus light right behind rather than on the retina when looking at close objects. It is a type of refractive error, along with nearsightedness, farsightedness, and astigmatism. Diagnosis is by an eye examination.

↑ Return to Menu

Lens (anatomy) in the context of Astigmatism (eye)

Astigmatism is a type of refractive error due to rotational asymmetry in the eye's refractive power. The lens and cornea of an eye without astigmatism are nearly spherical, with only a single radius of curvature, and any refractive errors present can be corrected with simple glasses. In an eye with astigmatism, either the lens or the cornea is slightly egg-shaped, with higher curvature in one direction than the other. This gives distorted or blurred vision at any distance and requires corrective lenses that apply different optical powers at different rotational angles. Astigmatism can lead to symptoms that include eyestrain, headaches, and trouble driving at night. Astigmatism often is present at birth, but can change or develop later in life. If it occurs in early life and is left untreated, it may result in amblyopia.

The cause of astigmatism is unclear, although it is believed to be partly related to genetic factors. The underlying mechanism involves an irregular curvature of the cornea and protective reaction changes in the lens of the eye, called lens astigmatism, that has the same mechanism as spasm of accommodation. Diagnosis is by an eye examination called autorefractor keratometry (objective, allows to see lens and cornea components of astigmatism) and subjective refraction.

↑ Return to Menu