Lead (electronics) in the context of Electrical connector


Lead (electronics) in the context of Electrical connector

Lead (electronics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Lead (electronics) in the context of "Electrical connector"


⭐ Core Definition: Lead (electronics)

In electronics, a lead (/ˈld/) or pin is an electrical connector consisting of a length of wire or a metal pad (surface-mount technology) that is designed to connect two locations electrically. Leads are used for many purposes, including: transfer of power; testing of an electrical circuit to see if it is working, using a test light or a multimeter; transmitting information, as when the leads from an electrocardiograph are attached to a person's body to transmit information about their heart rhythm; and sometimes to act as a heatsink. The tiny leads coming off through-hole electronic components are also often called pins; in ball grid array packages, they are in form of small spheres, and are therefore called "balls".

Many electrical components such as capacitors, resistors, and inductors have only two leads, while some integrated circuits can have several hundred or even more than a thousand for the largest ball grid array packages. Integrated circuit pins often either bend under the package body like a letter "J" (J-lead) or come out, down, and form a flat foot for securing to the board (S-lead or gull-lead).

↓ Menu
HINT:

In this Dossier

Lead (electronics) in the context of Surface-mount technology

Surface-mount technology (SMT), originally called planar mounting, is a method in which the electrical components are mounted directly onto the surface of a printed circuit board (PCB). An electrical component mounted in this manner is referred to as a surface-mount device (SMD). In industry, this approach has largely replaced through-hole technology construction method of fitting components, in large part because SMT allows for increased manufacturing automation which reduces cost and improves quality. It also allows for more components to fit on a given area of substrate. Both technologies can be used on the same board, with the through-hole technology often used for components not suitable for surface mounting such as large transformers and heat-sinked power semiconductors.

An SMT component is usually smaller than its through-hole counterpart because it has either smaller leads or no leads at all. It may have short pins or leads of various styles, flat contacts, a matrix of solder balls (BGAs), or terminations on the body of the component.

View the full Wikipedia page for Surface-mount technology
↑ Return to Menu

Lead (electronics) in the context of Electronic component

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance. Discrete circuits are made of individual electronic components that only perform one function each as packaged, which are known as discrete components, although strictly the term discrete component refers to such a component with semiconductor material such as individual transistors.

Electronic components have a number of electrical terminals or leads. These leads connect to other electrical components, often over wire, to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Basic electronic components may be packaged discretely, as arrays or networks of like components, or integrated inside of packages such as semiconductor integrated circuits, hybrid integrated circuits, or thick film devices. The following list of electronic components focuses on the discrete version of these components, treating such packages as components in their own right.

View the full Wikipedia page for Electronic component
↑ Return to Menu

Lead (electronics) in the context of Deep brain stimulation

Deep brain stimulation (DBS) is a type of neurostimulation therapy in which an implantable pulse generator is surgically implanted below the skin of the chest and connected by leads to the brain to deliver controlled electrical impulses. These charges therapeutically disrupt and promote dysfunctional nervous system circuits bidirectionally in both ante- and retrograde directions. Though first developed for Parkinsonian tremor, the technology has since been adapted to a wide variety of chronic neurologic disorders.

The exact mechanisms of DBS are complex and not fully understood, though it is thought to mimic the effects of lesioning by disrupting pathologically elevated and oversynchronized informational flow in misfiring brain networks. As opposed to permanent ablation, the effect can be reversed by turning off the DBS device. Common targets include the globus pallidus, ventral nuclear group of the thalamus, internal capsule, and subthalamic nucleus. It is one of the few neurosurgical procedures that allows blinded experiments, although most studies to date have not taken advantage of this discriminant.

View the full Wikipedia page for Deep brain stimulation
↑ Return to Menu

Lead (electronics) in the context of Through-hole technology

In electronics, through-hole technology (also spelled "thru-hole") is a manufacturing scheme in which leads on the components are inserted through holes drilled in printed circuit boards (PCB) and soldered to pads on the opposite side, either by manual assembly (hand placement) or by the use of automated insertion mount machines.

View the full Wikipedia page for Through-hole technology
↑ Return to Menu

Lead (electronics) in the context of Semiconductor package

A semiconductor package is a metal, plastic, glass, or ceramic casing containing one or more discrete semiconductor devices or integrated circuits. Individual components are fabricated on semiconductor wafers (commonly silicon) before being diced into die, tested, and packaged. The package provides a means for connecting it to the external environment, such as printed circuit board, via leads such as lands, balls, or pins; and protection against threats such as mechanical impact, chemical contamination, and light exposure. Additionally, it helps dissipate heat produced by the device, with or without the aid of a heat spreader. There are thousands of package types in use. Some are defined by international, national, or industry standards, while others are particular to an individual manufacturer.

View the full Wikipedia page for Semiconductor package
↑ Return to Menu

Lead (electronics) in the context of CPU socket

In computer hardware, a CPU socket or CPU slot contains one or more mechanical components providing mechanical and electrical connections between a microprocessor and a printed circuit board (PCB). This allows for placing and replacing the central processing unit (CPU) without soldering.

Common sockets have retention clips that apply a constant force, which must be overcome when a device is inserted. For chips with many pins, zero insertion force (ZIF) sockets are preferred. Common sockets include pin grid array (PGA) or land grid array (LGA). These designs apply a compression force once either a handle (PGA type) or a surface plate (LGA type) is put into place. This provides superior mechanical retention while avoiding the risk of bending pins when inserting the chip into the socket.

View the full Wikipedia page for CPU socket
↑ Return to Menu