Law of conservation of momentum in the context of "Restricted three-body problem"

Play Trivia Questions online!

or

Skip to study material about Law of conservation of momentum in the context of "Restricted three-body problem"

Ad spacer

⭐ Core Definition: Law of conservation of momentum

In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p (from Latin pellere "push, drive") is: In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second.

Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference, but in any inertial frame of reference, it is a conserved quantity, meaning that if a closed system is not affected by external forces, its total momentum does not change. Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics, quantum mechanics, quantum field theory, and general relativity. It is an expression of one of the fundamental symmetries of space and time: translational symmetry.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Law of conservation of momentum in the context of Three-body problem

In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities (or momenta) of three point masses orbiting each other in space and then to calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation.

Unlike the two-body problem, the three-body problem has no general closed-form solution, meaning there is no explicit formula for the positions of the bodies. When three bodies orbit each other, the resulting dynamical system is chaotic for most initial conditions, and the only way to predict the motions of the bodies is to estimate them using numerical methods.

↑ Return to Menu