Lattice graph in the context of "Graph drawing"

Play Trivia Questions online!

or

Skip to study material about Lattice graph in the context of "Graph drawing"

Ad spacer

⭐ Core Definition: Lattice graph

In graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space , forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense.

Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid. Moreover, these terms are also commonly used for a finite section of the infinite graph, as in "an 8 × 8 square grid".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Lattice graph in the context of Complex network

In the context of network theory, a complex network is a graph (network) with non-trivial topological features—features that do not occur in simple networks such as lattices or random graphs but often occur in networks representing real systems. The study of complex networks is a young and active area of scientific research (since 2000) inspired largely by empirical findings of real-world networks such as computer networks, biological networks, technological networks, brain networks, climate networks and social networks.

↑ Return to Menu

Lattice graph in the context of Spatial network

A spatial network (sometimes also geometric graph) is a graph in which the vertices or edges are spatial elements associated with geometric objects, i.e., the nodes are located in a space equipped with a certain metric. The simplest mathematical realization of spatial network is a lattice or a random geometric graph (see figure in the right), where nodes are distributed uniformly at random over a two-dimensional plane; a pair of nodes are connected if the Euclidean distance is smaller than a given neighborhood radius. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks and biological neural networks are all examples where the underlying space is relevant and where the graph's topology alone does not contain all the information. Characterizing and understanding the structure, resilience and the evolution of spatial networks is crucial for many different fields ranging from urbanism to epidemiology.

↑ Return to Menu

Lattice graph in the context of Network model

In computing, the network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, is not restricted to being a hierarchy or lattice.

The network model was adopted by the CODASYL Data Base Task Group in 1969 and underwent a major update in 1971. It is sometimes known as the CODASYL model for this reason. A number of network database systems became popular on mainframe and minicomputers through the 1970s before being widely replaced by relational databases in the 1980s.

↑ Return to Menu