Laser guide star in the context of Sodium layer


Laser guide star in the context of Sodium layer

Laser guide star Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Laser guide star in the context of "Sodium layer"


⭐ Core Definition: Laser guide star

A laser guide star is an artificial star image created for use in astronomical adaptive optics systems, which are employed in large telescopes in order to correct atmospheric distortion of light (called astronomical seeing). Adaptive optics (AO) systems require a wavefront reference source of light called a guide star. Natural stars can serve as point sources for this purpose, but sufficiently bright stars are not available in all parts of the sky, which greatly limits the usefulness of natural guide star adaptive optics. Instead, one can create an artificial guide star by shining a laser into the atmosphere. Light from the beam is reflected by components in the upper atmosphere back into the telescope. This star can be positioned anywhere the telescope desires to point, opening up much greater amounts of the sky to adaptive optics.

Because the laser beam is deflected by astronomical seeing on the way up, the returning laser light does not move around in the sky as astronomical sources do. In order to keep astronomical images steady, a natural star nearby in the sky must be monitored in order that the motion of the laser guide star can be subtracted using a tip-tilt mirror. However, this star can be much fainter than is required for natural guide star adaptive optics because it is used to measure only tip and tilt, and all higher-order distortions are measured with the laser guide star. This means that many more stars are suitable, and a correspondingly larger fraction of the sky is accessible.

↓ Menu
HINT:

👉 Laser guide star in the context of Sodium layer

The sodium layer is a layer of neutral atoms of sodium within Earth's mesosphere. This layer usually lies within an altitude range of 80–105 km (50–65 mi) above sea level and has a depth of about 5 km (3.1 mi). The sodium comes from the ablation of meteors. Atmospheric sodium below this layer is normally chemically bound in compounds such as sodium oxide, while the sodium atoms above the layer tend to be ionized.

The density varies with season; the average column density (the number of atoms per unit area above any point on the Earth's surface) is roughly 4 billion sodium atoms/cm. For a typical thickness of 5 km this corresponds to volume density of roughly 8000 sodium atoms/cm.

↓ Explore More Topics
In this Dossier

Laser guide star in the context of Astronomy

Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry to explain their origin and their overall evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroids, asteroids, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is the branch of astronomy that studies the universe as a whole.

Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Egyptians, Babylonians, Greeks, Indians, Chinese, Maya, and many ancient indigenous peoples of the Americas. In the past, astronomy included disciplines as diverse as astrometry, celestial navigation, observational astronomy, and the making of calendars.

View the full Wikipedia page for Astronomy
↑ Return to Menu

Laser guide star in the context of Guide star

In astronomy, a guide star is a reference star used to accurately maintain the tracking by a telescope of a celestial body, whose apparent motion through the sky is primarily due to Earth's rotation.

Accurate telescope pointing and tracking is critical for obtaining good astronomical images and astrophotographs. However, because Earth rotates, the sky appears to be in a constant state of motion relative to Earth. Although this movement appears to be relatively slow when viewed with the naked eye, with the high magnification and consequently smaller field of view provided by even a small telescope, this motion becomes apparent on timescales of the order of seconds.

View the full Wikipedia page for Guide star
↑ Return to Menu

Laser guide star in the context of Laser

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow and the optical amplifier patented by Gordon Gould.

A laser differs from other sources of light in that it emits light that is coherent. Spatial coherence allows a laser to be focused to a tight spot, enabling uses such as optical communication, laser cutting, and lithography. It also allows a laser beam to stay narrow over great distances (collimation), used in laser pointers, lidar, and free-space optical communication. Lasers can also have high temporal coherence, which permits them to emit light with a very narrow frequency spectrum. Temporal coherence can also be used to produce ultrashort pulses of light with a broad spectrum but durations measured in attoseconds.

View the full Wikipedia page for Laser
↑ Return to Menu

Laser guide star in the context of Lidar

Lidar (/ˈldɑːr/, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. Lidar may operate in a fixed direction (e.g., vertical) or it may scan directions, in a special combination of 3D scanning and laser scanning.

Lidar has terrestrial, airborne, and mobile uses. It is commonly used to make high-resolution maps, with applications in surveying, geodesy, geomatics, archaeology, geography, geology, geomorphology, seismology, forestry, atmospheric physics, laser guidance, airborne laser swathe mapping (ALSM), and laser altimetry. It is used to make digital 3-D representations of areas on the Earth's surface and ocean bottom of the intertidal and near coastal zone by varying the wavelength of light. It has also been increasingly used in control and navigation for autonomous cars and for the helicopter Ingenuity on its record-setting flights over the terrain of Mars. Lidar has since been used extensively for atmospheric research and meteorology. Lidar instruments fitted to aircraft and satellites carry out surveying and mapping – a recent example being the U.S. Geological Survey Experimental Advanced Airborne Research Lidar. NASA has identified lidar as a key technology for enabling autonomous precision safe landing of future robotic and crewed lunar-landing vehicles.

View the full Wikipedia page for Lidar
↑ Return to Menu

Laser guide star in the context of Forced perspective

Forced perspective is a technique that employs optical illusion to make an object appear farther away, closer, larger or smaller than it actually is. It manipulates human visual perception through the use of scaled objects and the correlation between them and the vantage point of the spectator or camera. It has uses in photography, filmmaking and architecture.

View the full Wikipedia page for Forced perspective
↑ Return to Menu

Laser guide star in the context of Optical amplification

An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiber-optic cables which carry much of the world's telecommunication links.

There are several different physical mechanisms that can be used to amplify a light signal, which correspond to the major types of optical amplifiers. In doped fiber amplifiers and bulk lasers, stimulated emission in the amplifier's gain medium causes amplification of incoming light. In semiconductor optical amplifiers (SOAs), electronhole recombination occurs. In Raman amplifiers, Raman scattering of incoming light with phonons in the lattice of the gain medium produces photons coherent with the incoming photons. Parametric amplifiers use parametric amplification.

View the full Wikipedia page for Optical amplification
↑ Return to Menu

Laser guide star in the context of Frequency addition source of optical radiation

Frequency addition source of optical radiation (acronym FASOR) is used for a certain type of guide star laser deployed at US Air Force Research Laboratory facilities SOR and AMOS. The laser light is produced in a sum-frequency generation process from two solid-state laser sources that operate at different wavelengths. The frequencies of the sources add directly to a summed frequency. Thus, if the source wavelengths are and , the resulting wavelength is

View the full Wikipedia page for Frequency addition source of optical radiation
↑ Return to Menu

Laser guide star in the context of Starfire Optical Range

Starfire Optical Range (SOR - Pronounced as an initialism) is a United States Air Force research laboratory on the Kirtland Air Force Base in Albuquerque, New Mexico. Its primary duty, according to the official website, is to "develop and demonstrate optical wavefront control technologies." The range is a secure lab facility and is a division of the Directed Energy Directorate of the Air Force Research Laboratory.

SOR's optical equipment includes a 3.5 meter telescope which is "one of the largest telescopes in the world equipped with adaptive optics designed for satellite tracking" according to the Air Force, a 1.5 meter telescope, and a 1-meter beam director.

View the full Wikipedia page for Starfire Optical Range
↑ Return to Menu

Laser guide star in the context of E-ELT

The Extremely Large Telescope (ELT) is an astronomical observatory under construction. When completed, it will be the world's largest optical and near-infrared extremely large telescope. Part of the European Southern Observatory (ESO) agency, it is located on top of Cerro Armazones in the Atacama Desert of northern Chile, 23 km from the existing facilities at Paranal Observatory.

The design consists of a reflecting telescope with a 39.3-metre-diameter (130-foot) segmented primary mirror and a 4.25 m (14 ft) diameter secondary mirror. The telescope is equipped with adaptive optics, six laser guide star units, and various large-scale scientific instruments. The observatory's design will gather 100 million times more light than the human eye, equivalent to about 10 times more light than the largest optical telescopes in existence as of 2025, with the ability to correct for atmospheric distortion. It has around 250 times the light-gathering area of the Hubble Space Telescope and, according to the ELT's specifications, will provide images 15 times sharper than those from Hubble.

View the full Wikipedia page for E-ELT
↑ Return to Menu