Large dense core vesicles in the context of Transmission electron microscopy


Large dense core vesicles in the context of Transmission electron microscopy

Large dense core vesicles Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Large dense core vesicles in the context of "Transmission electron microscopy"


⭐ Core Definition: Large dense core vesicles

Large dense core vesicle (LDCVs) are lipid vesicles in neurons and secretory cells which may be filled with neurotransmitters, such as catecholamines or neuropeptides. LDVCs release their content through SNARE-mediated exocytosis similar to synaptic vesicles. One key difference between synaptic vesicles and LDCVs is that protein synaptophysin which is present in the membrane of synaptic vesicles is absent in LDCVs. LDCVs have an electron dense core which appears as a black circle in micrographs obtained with transmission electron microscopy.

↓ Menu
HINT:

In this Dossier

Large dense core vesicles in the context of Neurotransmitter

A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell.

Neurotransmitters are released from synaptic vesicles into the synaptic cleft where they are able to interact with neurotransmitter receptors on the target cell. Some neurotransmitters are also stored in large dense core vesicles. The neurotransmitter's effect on the target cell is determined by the receptor it binds to. Many neurotransmitters are synthesized from simple and plentiful precursors such as amino acids, which are readily available and often require a small number of biosynthetic steps for conversion.

View the full Wikipedia page for Neurotransmitter
↑ Return to Menu

Large dense core vesicles in the context of Neuropeptides

Neuropeptides are chemical messengers made up of small chains of amino acids that are synthesized and released by neurons. Neuropeptides typically bind to G protein-coupled receptors (GPCRs) to modulate neural activity and other tissues like the gut, muscles, and heart.

Neuropeptides are synthesized from large precursor proteins which are cleaved and post-translationally processed then packaged into large dense core vesicles. Neuropeptides are often co-released with other neuropeptides and neurotransmitters in a single neuron, yielding a multitude of effects. Once released, neuropeptides can diffuse widely to affect a broad range of targets.

View the full Wikipedia page for Neuropeptides
↑ Return to Menu