Lambda Geminorum in the context of Angular separation


Lambda Geminorum in the context of Angular separation

Lambda Geminorum Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Lambda Geminorum in the context of "Angular separation"


⭐ Core Definition: Lambda Geminorum

Lambda Geminorum, Latinized from λ Geminorum, is a candidate multiple star system in the constellation Gemini. It is visible to the naked eye at night with a combined apparent visual magnitude of 3.57. The distance to this system is 101 light years based on parallax, and it is drifting closer with a radial velocity of –7.4 km/s. It is a member of what is suspected to be a trailing tidal tail of the Hyades Stream.

Components A and B of this system form a wide binary. The secondary, component B, is a magnitude 10.7 stellar companion at an angular separation of 9.29 from the primary along a position angle of 35.72°, as of 2009. The primary was identified as a spectroscopic binary by E. B. Frost in 1924. This companion was confirmed during a lunar occultation with a separation of 14.1±0.7 mas and magnitude 6.8.

↓ Menu
HINT:

In this Dossier

Lambda Geminorum in the context of Exocomet

An exocomet, or extrasolar comet, is a comet outside the Solar System, which includes rogue comets and comets that orbit stars other than the Sun. The first exocomets were detected in 1987 around Beta Pictoris, a very young A-type main-sequence star. There are now (as of February 2019) a total of 27 stars around which exocomets have been observed or suspected.

The majority of discovered exocometary systems (Beta Pictoris, HR 10, 51 Ophiuchi, HR 2174, HD 85905, 49 Ceti, 5 Vulpeculae, 2 Andromedae, HD 21620, Rho Virginis, HD 145964, HD 172555, Lambda Geminorum, HD 58647, Phi Geminorum, Delta Corvi, HD 109573, Phi Leonis, 35 Aquilae, HD 24966, HD 38056, HD 79469 and HD 225200) are around very young A-type stars. The relatively old shell star Phi Leonis shows evidence of exocomets in the spectrum and comet-like activity was detected around the old F2V-type star Eta Corvi. In 2018 transiting exocomets were discovered around F-type stars, using data from the Kepler space telescope. Some late B-type star (e.g. 51 Ophiuchi, HD 58647) are known to host exocomets.

View the full Wikipedia page for Exocomet
↑ Return to Menu