Kurtosis in the context of "Deviation (statistics)"

Play Trivia Questions online!

or

Skip to study material about Kurtosis in the context of "Deviation (statistics)"

Ad spacer

⭐ Core Definition: Kurtosis

Kurtosis (from Greek: κυρτός (kyrtos or kurtos), meaning 'curved, arching') refers to the degree of tailedness in the probability distribution of a real-valued, random variable in probability theory and statistics. Similar to skewness, kurtosis provides insight into specific characteristics of a distribution. Various methods exist for quantifying kurtosis in theoretical distributions, and corresponding techniques allow estimation based on sample data from a population. It is important to note that different measures of kurtosis can yield varying interpretations.

The standard measure of a distribution's kurtosis, originating with Karl Pearson, is a scaled version of the fourth moment of the distribution. This number is related to the tails of the distribution, not its peak; hence, the sometimes-seen characterization of kurtosis as peakedness is incorrect. For this measure, higher kurtosis corresponds to greater extremity of deviations (or outliers), and not the configuration of data near the mean.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Kurtosis in the context of Skewness

Skewness in probability theory and statistics is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. Similarly to kurtosis, it provides insights into characteristics of a distribution. The skewness value can be positive, zero, negative, or undefined.

For a unimodal distribution (a distribution with a single peak), negative skew commonly indicates that the tail is on the left side of the distribution, and positive skew indicates that the tail is on the right. In cases where one tail is long but the other tail is fat, skewness does not obey a simple rule. For example, a zero value in skewness means that the tails on both sides of the mean balance out overall; this is the case for a symmetric distribution but can also be true for an asymmetric distribution where one tail is long and thin, and the other is short but fat. Thus, the judgement on the symmetry of a given distribution by using only its skewness is risky; the distribution shape must be taken into account.

↑ Return to Menu

Kurtosis in the context of Descriptive statistics

A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features from a collection of information, while descriptive statistics (in the mass noun sense) is the process of using and analysing those statistics. Descriptive statistics is distinguished from inferential statistics (or inductive statistics) by its aim to summarize a sample, rather than use the data to learn about the population that the sample of data is thought to represent. This generally means that descriptive statistics, unlike inferential statistics, is not developed on the basis of probability theory, and are frequently nonparametric statistics. Even when a data analysis draws its main conclusions using inferential statistics, descriptive statistics are generally also presented. For example, in papers reporting on human subjects, typically a table is included giving the overall sample size, sample sizes in important subgroups (e.g., for each treatment or exposure group), and demographic or clinical characteristics such as the average age, the proportion of subjects of each sex, the proportion of subjects with related co-morbidities, etc.

Some measures that are commonly used to describe a data set are measures of central tendency and measures of variability or dispersion. Measures of central tendency include the mean, median and mode, while measures of variability include the standard deviation (or variance), the minimum and maximum values of the variables, kurtosis and skewness.

↑ Return to Menu

Kurtosis in the context of Summary statistic

In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in

A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.

↑ Return to Menu

Kurtosis in the context of Moment (mathematics)

Moments of a function in mathematics are certain quantitative measures related to the shape of the function's graph. For example, if the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis.

For a distribution of mass or probability on a bounded interval, the collection of all the moments (of all orders, from 0 to ) uniquely determines the distribution (Hausdorff moment problem). The same is not true on unbounded intervals (Hamburger moment problem).

↑ Return to Menu