Kurtosis (from Greek: κυρτός (kyrtos or kurtos), meaning 'curved, arching') refers to the degree of tailedness in the probability distribution of a real-valued, random variable in probability theory and statistics. Similar to skewness, kurtosis provides insight into specific characteristics of a distribution. Various methods exist for quantifying kurtosis in theoretical distributions, and corresponding techniques allow estimation based on sample data from a population. It is important to note that different measures of kurtosis can yield varying interpretations.
The standard measure of a distribution's kurtosis, originating with Karl Pearson, is a scaled version of the fourth moment of the distribution. This number is related to the tails of the distribution, not its peak; hence, the sometimes-seen characterization of kurtosis as peakedness is incorrect. For this measure, higher kurtosis corresponds to greater extremity of deviations (or outliers), and not the configuration of data near the mean.