Phytotoxicity in the context of "Soil fertility"

โญ In the context of soil fertility, phytotoxicity is considered a result ofโ€ฆ

Ad spacer

โญ Core Definition: Phytotoxicity

Phytotoxicity describes any adverse effects on plant growth, physiology, or metabolism caused by a chemical substance, such as high levels of fertilizers, herbicides, heavy metals, or nanoparticles. General phytotoxic effects include altered plant metabolism, growth inhibition, or plant death. Changes to plant metabolism and growth are the result of disrupted physiological functioning, including inhibition of photosynthesis, water and nutrient uptake, cell division, or seed germination.

โ†“ Menu

>>>PUT SHARE BUTTONS HERE<<<

๐Ÿ‘‰ Phytotoxicity in the context of Soil fertility

Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality. It also refers to the soil's ability to supply plant/crop nutrients in the right quantities and qualities over a sustained period of time. A fertile soil has the following properties:

  • The ability to supply essential plant nutrients and water in adequate amounts and proportions for plant growth and reproduction; and
  • The absence of toxic substances which may inhibit plant growth e.g. Fe which leads to nutrient toxicity.

The following properties contribute to soil fertility in most situations:

โ†“ Explore More Topics
In this Dossier

Phytotoxicity in the context of Environmental impact of pesticides

The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.

The negative effects of pesticides are not just in the area of application. Runoff and pesticide drift can carry pesticides into distant aquatic environments or other fields, grazing areas, human settlements and undeveloped areas. Other problems emerge from poor production, transport, storage and disposal practices. Over time, repeat application of pesticides increases pest resistance, while its effects on other species can facilitate the pest's resurgence. Alternatives to heavy use of pesticides, such as integrated pest management, and sustainable agriculture techniques such as polyculture mitigate these consequences, without the harmful toxic chemical application.

โ†‘ Return to Menu