Kepler-37 in the context of "Extrasolar planet"

Play Trivia Questions online!

or

Skip to study material about Kepler-37 in the context of "Extrasolar planet"

Ad spacer

⭐ Core Definition: Kepler-37

Kepler-37, also known as UGA-1785, is a G-type main-sequence star located in the constellation Lyra 209 light-years (64 parsecs) from Earth. It is host to exoplanets Kepler-37b, Kepler-37c, Kepler-37d and possibly Kepler-37e, all of which orbit very close to it. Kepler-37 has a mass about 80.3 percent of the Sun's and a radius about 77 percent as large. It has a temperature similar to that of the Sun, but a bit cooler at 5,357 K. It has about half the metallicity of the Sun. With an age of roughly 6 billion years, it is slightly older than the Sun, but is still a main-sequence star. Until January 2015, Kepler-37 was the smallest star to be measured via asteroseismology.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Kepler-37 in the context of Exoplanet

An exoplanet or extrasolar planet is a planet outside of the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first detected in 1988, was confirmed in 2003. In 2016, it was recognized that the first possible evidence of an exoplanet had been noted in 1917. As of 30 October 2025, there are 6,042 confirmed exoplanets in 4,501 planetary systems, with 1,020 systems having more than one planet.

There are many methods of detecting exoplanets. Transit photometry and Doppler spectroscopy have found the most, but these methods suffer from a clear observational bias favoring the detection of planets near the star; thus, 85% of the exoplanets detected are inside the tidal locking zone. About 1 in 5 Sun-like stars are estimated to have an "Earth-sized" planet in the habitable zone. Assuming there are 200 billion stars in the Milky Way, it can be hypothesized that there are 11 billion potentially habitable Earth-sized planets in the Milky Way, rising to 40 billion if planets orbiting the numerous red dwarfs are included.

↑ Return to Menu

Kepler-37 in the context of Extrasolar planets

An exoplanet or extrasolar planet is a planet outside of the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first detected in 1988, was confirmed in 2003. In 2016, it was recognized that the first possible evidence of an exoplanet had been noted in 1917. As of 4 December 2025, there are 6,053 confirmed exoplanets in 4,510 planetary systems, with 1,022 systems having more than one planet.

There are many methods of detecting exoplanets. Transit photometry and Doppler spectroscopy have found the most, but these methods suffer from a clear observational bias favoring the detection of planets near the star; thus, 85% of the exoplanets detected are inside the tidal locking zone. About 1 in 5 Sun-like stars are estimated to have an "Earth-sized" planet in the habitable zone. Assuming there are 200 billion stars in the Milky Way, it can be hypothesized that there are 11 billion potentially habitable Earth-sized planets in the Milky Way, rising to 40 billion if planets orbiting the numerous red dwarfs are included.

↑ Return to Menu

Kepler-37 in the context of Kepler-37b

Kepler-37b is an exoplanet orbiting the star Kepler-37 in the constellation Lyra. As of February 2013, it is the smallest planet discovered around a main-sequence star, with a radius slightly greater than that of the Moon and slightly smaller than that of Mercury. The measurements do not constrain its mass, but masses above a few times that of the Moon give unphysically high densities.

↑ Return to Menu

Kepler-37 in the context of Kepler-37d

Kepler-37d is an exoplanet discovered by the Kepler space telescope in February 2013. It is located 209 light years away, in the constellation Lyra. With an orbital period of 39.8 days, it is the largest of the three known planets orbiting its parent star Kepler-37.

A 2021 study detected Kepler-37d via radial velocity, finding a mass of about 5.4 M🜨, but a 2023 study instead found an upper limit on its mass of only 2 M🜨. In either case, it is not a rocky planet, but a low-density planet rich in volatiles.

↑ Return to Menu